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Snthesis of trimethoxysilylazachalcones 
General method: The appropriate azachalcone (0.80 mmol), anhydrous acetonitrile (6 mL) 

and (3-iodopropyl)trimethoxysilane (1.84 mmol, 0.53 g)  were placed, upstream of argon into a 
sealed reactor equipped with a magnetic stirrer, which was sealed and heated under stirring at 
80-82 ℃ for 24 h. After this time, the reactor content was cooled and evaporated to dryness, not 
exceeding a temperature of 45 ℃. The obtained crude product was purified by flash 
chromatography using dichloromethane/methanol 95/5 v/v as eluent. 

 

4N1Si 

 

 

 

 

 

 

Yield: 0.221 g; 51%; 542.5 g/mol; mp 186-188 ℃; Rf = 0.54 

1H NMR (400 MHz, DMSO-d6)  (ppm): 9.27 (d, J=6.6 Hz, 2H), 8.63(d, J=6.6 Hz, 2H), 7.83 (d, J=15.3 Hz, 1H, -CH=), 7.79 

(d, J=8.9 Hz, 2H), 7.65 (d, J=15.3 Hz, 1H, -CH=), 6.79 (d, J=9.0 Hz, 2H), 4.64 (t, J=7.2 Hz, 2H), 3.48 (s, 9H, Si(OCH3)3), 

3.06 (s, 6H, N(CH3)2), 2.01 (m, 2H), 0.63 (m, 2H, Si-CH2). 
13C{1H} NMR (100 MHz, DMSO-d6) δ (ppm): 185.7 (CO), 153.4, 151.5, 149.8, 146.4, 132.4, 126.5, 121.9, 115.2, 112.3, 

63.3, 50.6, 40.2 (N(CH3)2), 25.2, 5.9. 

HRMS (TOF MS ES+) m/z calcd. for C22H31N2O4Si+ [M]+, 415.2053; found, 415.2366. 

 

4N2Si  

 

 

 

 

 

Yield: 0.198 g; 41.7%; 594.5 g/mol; mp 175-176 ℃; Rf = 0.63 

1H NMR (400 MHz, DMSO-d6)  (ppm): 9.24 (d, J=6.7 Hz, 2H), 8.61 (d, J=6.6 Hz, 2H), 7.72 (d, J=15.0 Hz, 1H, -CH=), 

7.53 (d, J=15.0 Hz, 1H, -CH=), 7.34 (s, 1H), 4.62 (t, J=7.2Hz, 2H), 3.48 (s, 9H, Si(OCH3)3), 3.31 (t, J=5.8 Hz, 4H), 2.71 (t, 

J=6.0 Hz, 4H), 2.01 (m, 2H), 1.88 (t, J=5.2 Hz, 4H), 0.62 (m, 2H, Si-CH2). 
13C{1H} NMR (100 MHz, DMSO-d6)  (ppm): 184.6 (CO), 151.7, 150.1, 147.0, 146.2, 130.0, 126.3, 121.2, 120.8, 113.5, 

63.2, 50.6, 49.9, 27.5, 25.2, 21.3, 5.9. 

HRMS (TOF MS ES+) m/z calcd. for C26H35N2O4Si+ [M + H]+, 468.2444; found, 468.2476. 

 

3N1Si 

 

 

 

 

 

Yield: 0.201 g; 46.4%; 542.5 g/mol; mp 138-141 ℃; Rf = 0.48 
1H NMR (400 MHz, DMSO-d6)  (ppm): 9.71 (s, 1H), 9.25 (d, J=6.0 Hz, 1H), 9.16 (d, J=8.1 Hz, 1H), 8.31 (t, J=7.1 Hz, 1H), 

7.88 (d, J=15.2 Hz, 1H, -CH=), 7.79 (d, J=8.9 Hz, 2H), 7.68 (d, J=15.2 Hz, 1H, -CH=), 6.79 (d, J=9.0 Hz, 2H), 4.68 (t, J=7.3 

Hz, 2H), 3.48 (s, 9H, Si(OCH3)3), 3.07 (s, 6H, N(CH3)2), 2.04 (m, 2H), 0.65 (m, 2H, Si-CH2).  
13C{1H} NMR (100 MHz, DMSO-d6)  (ppm): 184.1 (CO), 153.2, 148.8, 147.1, 145.6, 144.4, 137.7, 132.2, 128.6, 121.9, 

115.0, 112.2, 63.6, 50.6, 40.2 (N(CH3)2), 25.2, 5.9. 

HRMS (TOF MS ES+) m/z calcd. for C22H31N2O4Si+ [M]+, 415.2053; found, 415.2158. 

 

3N2Si 
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Yield: 0.197 g; 41.5%; 594.5 g/mol; mp 120-122 ℃; Rf = 0.56 

1H NMR (400 MHz, DMSO-d6)  (ppm): 9.68 (s, 1H), 9.23 (d, J=6.0 Hz, 1H), 9.14 (d, J=8.2 Hz, 1H), 8.30 (t, J=7.1 Hz, 1H), 

7.76 (d, J=15.0 Hz, 1H, -CH=), 7.55 (d, J=15.0 Hz, 1H, -CH=), 7.34 (s, 2H), 4.67 (t, J=7.3 Hz, 2H), 3.48 (s, 9H, Si(OCH3)3), 

3.30 (t, J=5.8 Hz, 4H), 2.72 (t, J=6.0 Hz, 4H), 2.03 (m, 2H), 1.88 (t, J=5.2 Hz, 4H), 0.65 (m, 2H, Si-CH2). 
13C{1H} NMR (100 MHz, DMSO-d6)  (ppm): 183.4 (CO), 149.2, 147.0, 146.7, 145.5, 144.2, 137.9, 129.8, 128.6, 121.1, 

120.7, 113.3, 63.6, 50.6, 49.8, 27.5, 25.2, 21.3, 5.9. 

HRMS (TOF MS ES+) m/z calcd. for C26H35N2O4Si+ [M + H]+, 468.2444; found, 468.2485. 
 

1H NMR spectrum of 4N1Si 

 
 
13C NMR spectrum of 4N1Si 
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1H NMR spectrum of 4N2Si  
 

 
 
 
 
13C NMR spectrum of 4N2Si 
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1H NMR spectrum of 3N1Si 
 

 
 
 
 
13C NMR spectrum of 3N1Si 
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1H NMR spectrum of 3N2Si 
 

 
 
 
 
13C NMR spectrum of 3N2Si 
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ESI(+) HRMS mass spectrum of 4N1Si product dissolved in methanol solution.  
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ESI(+) HRMS mass spectrum of 3N1Si product dissolved in methanol solution.  
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Enlarged MS spectrum in the range 325–600 m/z 
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ESI(+) HRMS mass spectrum of 4N2Si product dissolved in methanol solution.  
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ESI(+) HRMS mass spectrum of 3N2Si product dissolved in methanol solution.  
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Fig. S1. Comparison of the electronic absorption spectra of the investigated azachalcones and 
trimethoxysilylazachalcones recorded in four solvents of different polarity (1,4-dioxane, ethyl 
acetate, DMF, and ethanol).  
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Fig. S2. Electronic absorption spectra of the four investigated trimethoxysilylazachalcones 
recorded in solvents of different polarity (1,4-dioxane, ethyl acetate, DMF, and ethanol). Each 
panel displays all four compounds measured in a given solvent, illustrating the influence of 
solvent environment on their electronic transitions and ICT-related spectral characteristics.  
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Fig. S3. Distribution of the long-wavelength absorption band of the trimethoxysilylazachalcones 
in 1,4-Dx. 
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Fig. S4. Influence of solvent polarity on the electronic absorption behaviour of the four 
trimethoxysilylazachalcones. Each plot corresponds to a different solvent: 1,4-dioxane, ethyl 
acetate, DMF, or ethanol; and presents the absorption spectra of all four compounds. This 
representation highlights solvent-dependent variations in their spectral profiles and ICT-related 
optical responses.  
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Fig. S5. Effect of the trimethoxysilylazachalcones structure on their fluorescence spectra in 
solvents of different polarity (1,4-dioxane, ethyl acetate, DMF, and ethanol). Each panel 
presents the fluorescence spectra of all four compounds measured in a specific solvent, with 
the excitation wavelength indicated for each panel.  
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Fig. S6. Effect of solvent polarity on the fluorescence spectra of the 
trimethoxysilylazachalcones. Each panel shows a single compound measured in four different 
solvents (1,4-dioxane, ethyl acetate, DMF, and ethanol), with the excitation wavelength as 
indicated in Figure S5.  
 

550 600 650 700 750 800 850
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

. 
F

lu
o
re

s
c
e
n
c
e
 I
n
te

n
s
it
y
 (

a
.u

.)

l (nm)

in EtOH at liquid N2 temperature

 3N1Si

 3N2Si

 4N1Si

 4N2Si

 
600 650 700 750 800 850

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
. 

P
h

o
s
p

h
o

re
s
c
e

n
c
e

 I
n

te
n

s
it
y
 (

a
.u

.)

l (nm)

in EtOH at liquid N2 temperature

 3N1Si

 3N2Si

 

 

 
Fig. S7. Fluorescence (left) and phosphorescence (right) spectra of the 
trimethoxysilylazachalcones in EtOH at liquid nitrogen temperature. Excitation wavelength 500 
nm for 4N1Si, 3N1Si and 3N2Si, and 560 nm for 4N2Si. 
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Table S1. The basic spectroscopic parameters of the tested 
trimethoxysilylazachalcones, i.e., absorption maxima of the long-wavelength band 
( ), maximum extinction coefficient (), fluorescence maxima ( ) and Stokes shift 
(nSS) in different solvents. 

Solvent 
 

 
(nm) 

 

(104 M-1cm-1) 
 

(nm) 

nSS 

(cm-1) 

 
 

(nm) 

 

(104 M-1cm-1) 
 

(nm) 

nSS 

(cm-1) 

   4N1Si     4N2Si   

1,4-Dx  478 -1) 522 1763  526 - 547 730 

EtOAc  484 2.15 548 2413  528 2.19 585 1845 

DMF  497 2.39 613 3808  544 2.25 660 3231 

   3N1Si     3N2Si   

1,4-Dx  465 - 525 2458  503 - 542 1431 

EtOAc  464 2.42 530 2684  509 2.61 543 1230 

DMF  464 2.89 598 4829  502 2.93 670 4995 
1) Due to very poor solubility, the maximum extinction coefficient was not determined. 
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Table S2. Computed electronic structure properties of precursors 4N1, 4N2, 3N1, 3N2. 
Calculated one-photon excitation energy (∆E1PA), one-photon absorption wavelength 
(λ1PA), oscillator strength (f), Ciofini’s charge transfer parameter DCT, charge transfered 
QCT, and molecular orbitals involved to this transition. 

Transition 
∆E1PA 
(eV) 

λ1PA
  

(nm) 
F 

DCT 
(Å) 

QCT 
(a.u.) 

Dominant molecular orbitals 

4N1 

S0 → S1 3.151 393 1.120 3.76 0.734 HOMO → LUMO 

S0 → S2 3.800 326 0.004 1.07 0.778 HOMO−4 → LUMO 

S0 → S3 4.460 278 0.033 0.93 0.526 HOMO → LUMO+5 

4N2 

S0 → S1 2.996 414 1.086 3.75 0.756 HOMO → LUMO 

S0 → S2 3.805 326 0.002 1.11 0.787 HOMO−4 → LUMO 

S0 → S3 4.246 292 0.010 2.29 0.414 HOMO−1 → LUMO 

3N1 

S0 → S1 3.219 385 1.159 3.68 0.727 HOMO → LUMO 

S0 → S2 3.839 323 0.003 1.16 0.784 HOMO−2 → LUMO 

S0 → S3 4.466 278 0.042 0.75 0.533 HOMO → LUMO+5 

3N2 

S0 → S1 3.065 405 1.110 3.68 0.751 HOMO → LUMO 

S0 → S2 3.846 322 0.003 1.19 0.792 HOMO−3 → LUMO 

S0 → S3 4.261 291 0.016 1.82 0.417 HOMO−1 → LUMO 
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Table S3. Computed electronic structure properties of compounds 4N1Si, 4N2Si, 
3N1Si, 3N2. Calculated one-photon excitation energy (∆E1PA), one-photon absorption 
wavelength (λ1PA), oscillator strength (f), Ciofini’s charge transfer parameter DCT, charge 
transfered QCT, and molecular orbitals involved to this transition. 

Transition 
∆E1PA 
(eV) 

λ1PA
  

(nm) 
f 

DCT 
(Å) 

QCT 
(a.u.) 

Dominant molecular orbitals 

4N1Si 

S0 → S1 2.886 430 1.041 4.18 0.792 HOMO → LUMO 

S0 → S2 3.709 334 0.003 0.93 0.801 HOMO−3 → LUMO 

S0 → S3 4.146 299 0.236 4.98 0.902 HOMO → LUMO+1 

4N2Si 

S0 → S1 2.714 457 1.012 4.18 0.814 HOMO → LUMO 

S0 → S2 3.701 335 0.003 0.96 0.811 HOMO−3 → LUMO 

S0 → S3 3.949 314 0.193 4.86 0.915 HOMO → LUMO+1 

3N1Si 

S0 → S1 3.038 408 1.188 3.82 0.745 HOMO → LUMO 

S0 → S2 3.883 319 0.002 1.01 0.800 HOMO−3 → LUMO 

S0 → S3 3.990 311 0.048 5.31 1.235 HOMO → LUMO+1 

3N2Si 

S0 → S1 2.881 430 1.164 3.82 0.761 HOMO → LUMO 

S0 → S2 3.804 326 0.040 5.29 1.273 HOMO → LUMO+1 

S0 → S3 3.890 319 0.003 1.05 0.810 HOMO−3 → LUMO 
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Fig. S8. Compound 4N1, frontier molecular orbitals (plotted with the same contour value 
(0.02)). 
 

 
Fig. S9. Compound 4N2, frontier molecular orbitals (plotted with the same contour value 
(0.02)). 

 
Fig. S10. Compound 3N1, frontier molecular orbitals (plotted with the same contour value 
(0.02)). 
 

 
Fig. S11. Compound 3N2, frontier molecular orbitals (plotted with the same contour value 
(0.02)). 
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Fig. S12. Compound 4N1Si, frontier molecular orbitals (plotted with the same contour value 
(0.02)). 
 

 
Fig. S13. Compound 4N2Si, frontier molecular orbitals (plotted with the same contour value 
(0.02)). 

 
Fig. S14. Compound 3N1Si, frontier molecular orbitals (plotted with the same contour value 
(0.02)). 

 
Fig. S15. Compound 3N2Si, frontier molecular orbitals (plotted with the same contour value 
(0.02)). 
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Fig. S16. Compound 4N1, graphical representation of Ciofini’s charge transfer parameter DCT. 
Magenta colour represents depletion of the charge density, Green colour represents increase of 
the density. 
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Fig. S17. Compound 4N2, graphical representation of Ciofini’s charge transfer parameter DCT. 
Magenta colour represents depletion of the charge density, Green colour represents increase of 
the density. 
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Fig. S18. Compound 3N1, graphical representation of Ciofini’s charge transfer parameter DCT. 
Magenta colour represents depletion of the charge density, Green colour represents increase of 
the density. 
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Fig. S19. Compound 3N2, graphical representation of Ciofini’s charge transfer parameter DCT. 
Magenta colour represents depletion of the charge density, Green colour represents increase of 
the density. 
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Fig. S20. Compound 4N1Si, graphical representation of Ciofini’s charge transfer parameter DCT. 
Magenta colour represents depletion of the charge density, Green colour represents increase of 
the density. 
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Fig. S21. Compound 4N2Si, graphical representation of Ciofini’s charge transfer parameter DCT. 
Magenta colour represents depletion of the density, green colour represents increase of the 
density. 
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Fig. S22. Compound 3N1Si, graphical representation of Ciofini’s charge transfer parameter DCT. 
Green colour represents depletion of the density, magenta colour represents increase of the 
density. 
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Fig. S23. Compound 3N2Si, graphical representation of Ciofini’s charge transfer parameter DCT. 
Magenta colour represents depletion of the charge density, Green colour represents increase of 
the charge density. 
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Fig. S24. Proposed interaction mechanisms: (a) formation of hydrogen bonds, and (b) 
electrostatic interaction involving the zwitterionic mesomeric form of the chalcone molecule. 
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Fig. S25. Normalized extinction spectra for NSs in water, NSs@SiO₂ in ethanol, NSs@SiO₂ with: 
4N1Si (a), 4N2Si (b), 3N1Si (c), 3N2Si (d) in ethanol.  
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Fig. S26. Representative EDX spectra obratned for a) NSs@SiO2 and b) NSs@SiO2@4N1Si.  
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Fig. S27. Fluorescence spectra of NSs with silica and trimethoxysilylazachalcones in EtOH 
excited at 500 nm.  
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Fig. S28. Evolution associated difference spectra obtained from sequential three-compartment 
model for: 4N1Si, 4N2Si, 3N1Si, 3N2Si. 
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Fig. S29. Left: The temporal absorption profiles recorded at 460, 560, 670, and 725 nm for 4N2Si 
sample obrained after sequential three exponential model fit. Right: Time course of normalized 
transient absorbance recorded at 450 nm for 4N2Si (red) and NSs@SiO2@4N2Si (blue). The 
reference signal from bare NSs is plotted in green. Points - experimental data, lines are plotted 
based on target model. 
 


