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Materials and General Methods 

              All chemical reactions were conducted under an argon atmosphere utilizing anhydrous 

solvents in a screw-cap Schlenk tube. Reagents and solvents were sourced from a local supplier 

and used as received, without additional purification. Reaction progress was monitored via 

thin-layer chromatography on commercially available 0.25 mm fluorescent silica plates (F-

254), visualized under a UV lamp at 254 nm and 354 nm wavelengths. Purification of 

compounds was performed by column chromatography using silica gel (250–400 mesh). NMR 

spectra were obtained on a 500 MHz Varian FT-NMR instrument. High Resolution Mass 

Spectrometric (HRMS) analysis was performed using 6540 UHD Accurate-Mass Agilent Q-

TOF LC/MS instrument, WATERS Micromass Q-TOF MicroTM instrument and Bruker 

Maxis Impact Micro-TOF LC/MS instrument. SEM was recorded using ZEISS-EVO 25 

instrument. 

JASCO make UV–vis spectrophotometer (Model: V 670) was used for recording steady 

state absorption spectra with samples taken in a quartz cuvette of 1 cm path length. Steady-

state emission studies were performed using a JASCO make spectrofluorometer (Model: FP 

6500) with samples in a 10 mm × 10 mm optical cell.

Photography for the solid state dosimetry was done using NIKON D5600 DSLR camera 

(24 megapixels, CMOS sensor, ISO-A (100-25600), shutter speed range: 1/4000 sec- 30 sec, 

F-Stop: f/5 – f/32, Lens: Nikon AF-S DX Nikkor 18-140 mm f/3.5-5.6G ED VR Lens). 

Photography under UV light was done using the specifications: F-stop: f/16, exposure time: 

1/50 sec, ISO-A: 25600, focal length: 140 mm, maximum aperture: 4.7, exposure mode: 

manual. On the other hand, photography under visible light was done using the specifications: 

F-stop: f/5.6, exposure time: 1/80 sec, ISO-A: 800, focal length: 42 mm, maximum aperture: 

4.3, exposure mode: manual.

Superporous poly(2-hydroxyethyl methacrylate) (PolyHEMA) and PGMA-g-

PolyHEMA were investigated to assess morphological changes induced by radiation-assisted 

grafting. Scanning electron microscopy (SEM) was employed to visualize the surface and 

internal porous structure of the polymers. As the samples are inherently non-conductive, they 

were coated with a thin layer of gold via sputter coating to prevent charging and enhance image 

resolution. The coated samples were then mounted on SEM stubs using graphite tape to provide 

a conductive path and further avoid charge accumulation during imaging.
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Synthesis and NMR spectra
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Scheme S1. Mechanism for conversion of BODIPY-Leucomalachite green dye (3) to 

BODIPY-Malachite green dye (4) under gamma radiolysis in chloroform.   
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NN

Figure S1. 1H NMR of 7 in CDCl3.

Figure S2. 13C NMR of 7 in CDCl3.
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Figure S3. 1H NMR of 8 in in Acetone-d6.

Figure S4. 13C NMR of 8 in in Acetone-d6.
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Figure S5. 1H NMR of BLMG 3 in CDCl3.

Figure S6. 13C NMR of BLMG 3 in Acetone-d6.
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Figure S7. Effect of solvents on to grafting extent of GMA on to SPH @ 12.5% GMA. 

Figure S8. Effect of GMA concentration on to grafting extent on to superporuos polyHEMA 

at total absorbed dose of 5k Gy in MeOH/H2O (1:1).
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Figure S9. FTIR spectra of (a) untreated poly(HEMA) and (b) Poly(GMA) (c) PolyGMA-g-

poly(HEMA) (G.Y.~100%). 



S9

Photophysical property studies
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Figure S10. Change in absorption spectra of BLMG 3 with HCl exposure and after 15 Gy 

ofradiation exposure in chloroform. 
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Figure S11. Change in fluorescence spectra of BLMG 3 with HCl exposure and after 15 Gy 

ofradiation exposure in chloroform. 

Gamma dosimetry studies
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Figure S12. Absorption spectra of BLMG 3 in ACN before and after -irradiation (15 Gy).
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Figure S13. Fluorescence spectra of BLMG 3 in ACN before and after -irradiation (15 Gy).
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Figure S14. Absorption spectra of BLMG 3 in CHCl3 before and after -irradiation (15 Gy).
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Figure S15. Fluorescence spectra of BLMG 3 in CHCl3 before and after -irradiation (15 
Gy).
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Figure S16. Absorption spectra of BLMG 3 in EtOAc before and after -irradiation (15 Gy).
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Figure S17. Fluorescence spectra of BLMG 3 in EtOAc before and after -irradiation (15 
Gy).
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Figure S18. Absorption spectra of BLMG 3 in hexane before and after -irradiation (15 Gy).
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Figure S19. Fluorescence spectra of BLMG 3 in hexane before and after -irradiation (15 
Gy).
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Figure S20. Absorption spectra of BLMG 3 in MeOH before and after -irradiation (15 Gy).

500 550 600 650 700
0

1

2

3

4

5

6

7

 

 

Fl
. I

nt
en

si
ty

 (a
.u

.)

Wavelength (nm)

 0 Gy
 15 Gy

Figure S21. Fluorescence spectra of BLMG 3 in MeOH before and after -irradiation (15 
Gy).
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Figure S22. Absorption spectra of BLMG 3 in THF before and after -irradiation (15 Gy).
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Figure S23. Fluorescence spectra of BLMG 3 in THF before and after -irradiation (15 Gy).
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Figure S24. Fluorescence intensity of BLMG 3 in different solutions after 15 Gy of -

irradiation. 
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Figure S25. Linear Fit of plot of fluorescence enhancement of BLMG 3 (20 M) with -

radiation dose. 
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Figure S26. Fluorescence profile change of BLMG 3 (40 M, λex = 485 nm) in CHCl3 under 

increasing -radiation exposure (0-50 Gy). Inset: Plot of fluorescence enhancement of BLMG 

3 with -radiation dose. 
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Figure S27. Linear Fit of plot of fluorescence enhancement of BLMG 3 (40 M) with -

radiation dose. 
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Figure S28. Fluorescence profile change of BLMG 3 (80 M, λex = 485 nm) in CHCl3 under 

increasing -radiation exposure (0-50 Gy). Inset: Plot of fluorescence enhancement of BLMG 

3 with -radiation dose. 
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Figure S29. Linear Fit of plot of fluorescence enhancement of BLMG 3 (80 M) with -

radiation dose. 
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Figure S30. Stability of the fluorescence output of BLMG 3 in chloroform solution after 
gamma irradiation.  
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Figure S31. Fluorescence output of dosimeter with BLMG 3 in chloroform solution (80 M) 

after 25 Gy of gamma irradiation (Dose rate: 54.40 Gy/min) under different temperature 

condition.
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Figure S32. Fluorescence output of dosimeter with BLMG 3 in chloroform solution (80 M) 

after 25 Gy of gamma irradiation with different dose rate. 

 

300 400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

Ab
so

rb
an

ce
 (O

D)

Wavelength (nm)

 0 Gy
 1 Gy
 5 Gy
 10 Gy
 20 Gy
 30 Gy
 40 Gy
 50 Gy

Figure S33. Absorbance profile change of LMG 1 (80 M) in CHCl3 under increasing -

radiation exposure (0-50 Gy). 
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Figure S34. Linear Fit of plot of increase in absorbance of LMG 1 (80 M) with -radiation 

dose. 

Calculation of LOD: The Limit of Detection (LOD) was determined following the IUPAC 

protocol with the formula LOD = 3σ/S, where S represents the slope of the calibration curve, 

and σ is the standard deviation of the fluorescence response of the blank, obtained from 10 

consecutive fluorescence measurements of the dye under consistent conditions.    

LOD = (3 x 0.01657) / 7.7647
                   = 0.0064 Gy

Cost calculations: Fluorescence technique is known to be low-cost analytical technique. It 

requires fluorometer which is easily available with reasonable price. And the fluorophore is 

also required in very less quantity (mM to nM concentration). The synthetic cost of the BLMG 

dye (only chemicals cost) is Indian Rs. 3800/100 mg (~40 USD/100 mg). As we use 80 mM 

dye solution for 0-50 Gy measurement, thus from 10 mg BLMG dye we can make ~60 

dosimeters. Thus, cost of each dosimeter will be very low (Indian Rs. 6 for each dosimeter). 

For lower dose range measurement, more diluted dye solution is required, in that case, the cost 

of each dosimeter will be further less.
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Determination of Swelling Ratio:

To determine the Swelling Ratio, both grafted and non-grafted polymers were soaked in CHCl3 
for 10 min.

Table S1. Calculation of Swelling Ratio of superporous PolyHEMA (SPH).

Table S2. Calculation of Swelling Ratio of PolyGMA-g-PolyHEMA.

Sr. No Wt. of 
polyHEMA in 

grafted polymer 
(g)

Wt. of absorbed 
CHCl3

(g)

Wt. of absorbed 
CHCl3

per gram of 
polyHEMA

Swelling Ratio
(Mean)

1 0.794 12.47 15.71
2 0.519 8.62 16.61
3 0.576 8.79‬ 15.26

15.86

Ratio of “Swelling Ratio” of grafted polymer and non-grafted polymer = 15.86 / 2.62‬ = 
6.05

Sr. No Wt. of 
polyHEMA 

(g)

Wt. of absorbed 
CHCl3

(g)

Wt. of absorbed 
CHCl3

per gram of 
polyHEMA

Swelling Ratio
(Mean)

1 0.202‬‬ 0.528 2.61
2 0.111 0.288‬ 2.59
3 0.118 0.314‬ 2.66

2.62
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Table S3. Comparison of the developed dosimeter with reference standard dosimetry 

systems.

Dosimeter Measurement instrument Usable dose 

range (Gy)

Ref

BLMG (20 M)a Fluorometer 0.006-11 Our Method

Calorimeter Thermometer 102–105 1

Alanine EPR spectrometer  1–105 1

Ceric-cerous sulphate UV spectrophotometer or 

electrochemical 

potentiometer

 5×102–5×104 1

ECB solution Spectrophotometer, 

colour titration,

high frequency conductivity

10–2×106 1

Ferrous sulphate 

solution 

 UV spectrophotometer 20–4×102 1

Dichromate solution UV/visible spectrophotometer 2×103–5×104 1
aDose range depends on concentration of BLMG dye.
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Table S4. Comparison of the developed dosimeter with previously reported dosimeters 

based on organic dyes.

Dosimeter Response mechanism 

(Analytical Method)

Detection Range 

(kGy)

Ref.

BLMG (20 M)a Chemical Reaction 

(Fluorescence)

6.0×10-6–0.011 Our 

Method

Acid Fuchsin                                                                   Bleaching (UV-Vis) 0.17–1.65 2

Murexide dye Degradation (UV-Vis) 0.1–2.0 3

DPC/Cr complex Bleaching (UV-Vis) 0.2–1.0 4

Cyanocobalamin Bleaching (UV-Vis) 0.2–1.0 5

Crystal violet                                     Bleaching (UV-Vis) 0.05–0.55 6

Rose bengal dye Bleaching (UV-Vis) 0.05–1 7

4,4’-Di(1H-phenanthro[9,10-

d]imidazole-2-yl)-biphenyl

Aggregation-induced 

quenching (Fluorescence)

7.0×10-6–0.002 8

Tetraphenylethylene  

derivative 

Aggregation-induced 

emission (Fluorescence)

2.3×10−5 – 0.008 9

Silole and polymer derivatives Aggregation-induced 

emission (Fluorescence)

0.13–40 10

N-N’-bis(salicylidene)-1,3- 

propanediamine 

Degradation 

(Fluorescence)

0.04–5 11

Thiamine Hydrochloride Degradation (HPLC) 0.1–2.0 12

Benzene Formation of phenol 

(HPLC)

7×10−6 – 0.1 13

Imino-BODIPY  Chemical Reaction 

(Fluorescence)

1.0×10-6–0.005 14

aDose range depends on concentration of BLMG dye.



S25

Table S5. Weight loss of chloroform solution of BLMG dye (80 M) at 25 oC and 4 oC. 

References

1. Dosimetry for Food Irradiation, Technical Reports Series No. 409, IAEA, Vienna, 

2002.

2. M. Sayed, S. Tabassum, N. S. Shah, J. A. Khan, L. A. Shah, F. Rehman, S. U. Khan, 

H. M. Khan, M. Ullah, J. Food Meas. Charact. 2019, 13, 707–715.

3. S. M. Gafar, Abdel-Kader, N. M. Pigment Resin Technol. 2019, 48, 540–546.

4.  S. M. Gafar, M. A. El-Kelany, S. R. El-Shawadfy, J. Radiat. Res. Appl. Sci. 2018, 11, 

190–194.

5.  V. Prakasan, B. Sanyal, S. P. Chawla, R. Chander, A. Sharma, Appl. Radiat. Isot. 2014, 

86, 97–101.

6.  H. M. Khan, S. Naz, S. Tabassum, J. Radioanal. Nucl. Chem. 2011, 289, 225–229.

7.  H. M. Khan, A. A. Khan, J. Radioanal. Nucl. Chem. 2010, 284, 37–42.

8.  J.-M. Han, M. Xu, B. Wang, N. Wu, X. Yang, H. Yang, B. J. Salter, L. Zang, J. Am. 

Chem. Soc. 2014, 136, 5090-5096.

9. X. Dong, F. Hu, Z. Liu, G. Zhang, D. Zhang, Chem. Commun. 2015, 51, 3892–3895.

10.  Z. Liu, W. Xue, Z. Cai, G. Zhang, D. Zhang, J. Mater. Chem. 2011, 21, 14487-14491.

11.  E. Ergun, J. Fluoresc. 2021, 31, 941–950.

12.  Y. Li, C. Lv, Y. Zhao, Q. Sun, Y. Li, Anal. Sci. 2013, 29, 1189–1194.

At 25 oC At 4 oCSr 

No. Initial Weight 

   (Day 1) (g)

Final Weight         

(Day 20) (g)

Weight 

Loss (g)

Initial Weight 

(Day 1) (g)

Final Weight 

(Day 20) (g)

Weight 

Loss (g)

1 11.0258 11.0234 0.0024

‬

11.0648 11.0642 0.0006

2 11.1305 11.1304 0.0001

‬

11.2186 11.2185 0.0001

3 11.3527 11.3494 0.0033

‬

11.3407 11.3399 0.0008

4 11.2983 11.2980 0.0003

‬

11.3357 11.3354 0.0003

5 11.2767 11.2720 0.0047 11.5137 11.5137 0.0000



S26

13.  K. Takeda, Anal. Sci. 2011, 27, 1189–1194.

14. Choudhary, M. K.; Gorai, S.; Patro, B. S. and Mula, S. ChemPhotoChem, 2024, 8, 

e202300245.


