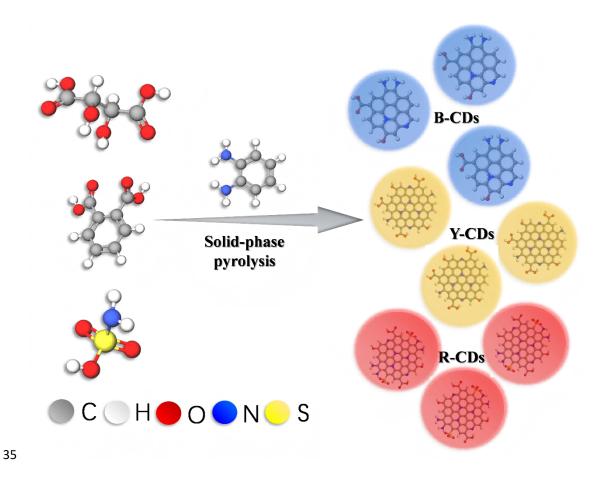
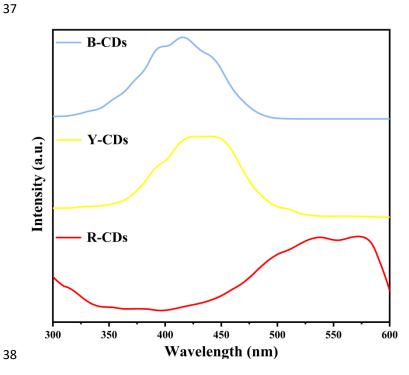
Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

1 Supplementary Material

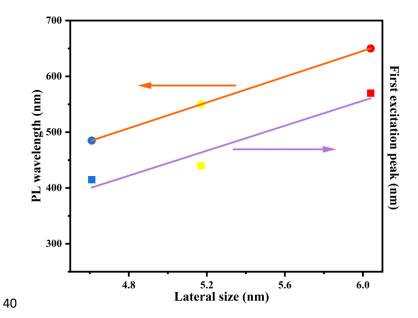
3 Acid-reagent-engineered tunable multicolor carbon dots via solid-


4 phase pyrolysis for advanced information encryption and anti-

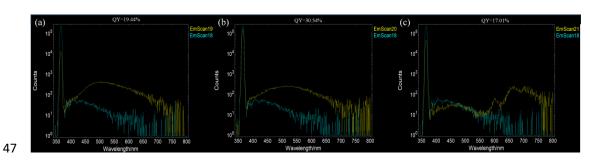
5 counterfeiting


6 Jin Chai,[a] Caiqin Su,[a] Yide Han,[a] Wenhao Li,[a] Nan Wang,[b] Wengao Zhang,[c] Xia

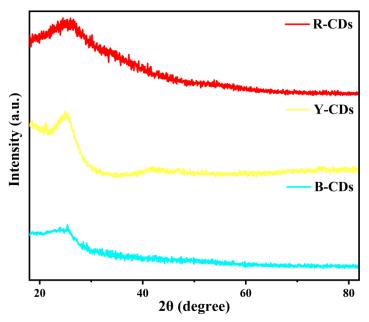
7 Zhang*^[a]


```
8
           J. Chai, Y. Han, W. Li, X. Zhang
 9
           Department of Chemistry, College of Sciences
10
           Northeastern University
11
           No.3-11 Wenhua Road, Heping District, Shenyang, 110819, P. R. China
12
           E-mail: xzhang@mail.neu.edu.cn
13 [b]
           N. Wang
14
           Analytical and Testing Center
15
           Northeastern University
16
           No.3-11 Wenhua Road, Heping District, Shenyang, 110819, P. R. China
17
           E-mail: wangnan001050@163.com
18 [c]
           W. Zhang
19
           School of Materials Science and Engineering
20
           Southern University of Science and Technology
21
           No. 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, 518055, P. R. China
22
           E-mail: 1435669101@qq.com
23
24
25
26
27
28
29
30
31
32
33
34
```

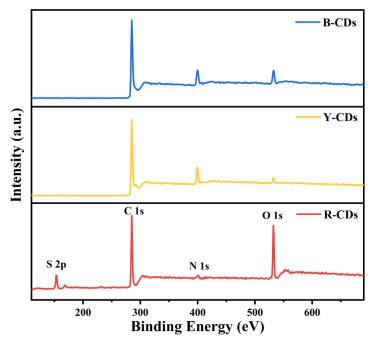

36 Fig. S1 Illustration of the synthesis of three CDs.



39 Fig. S2 PL excitation spectra of B-CDs, Y-CDs, and R-CDs.


41 Fig. S3 Dependence of the PL wavelength and first excitonic absorption band on the

42 particle size of CDs.


48 Fig. S4 The photoluminescence quantum efficiency of B-CDs (a), Y-CDs (b), and R-

49 CDs (c).

55 Fig. S5 The XRD patterns of B-CDs, Y-CDs and R-CDs.

60 Fig. S6 Full-survey X-ray photoelectron spectroscopy (XPS) spectra of B-CDs, Y-

61 CDs and R-CDs.

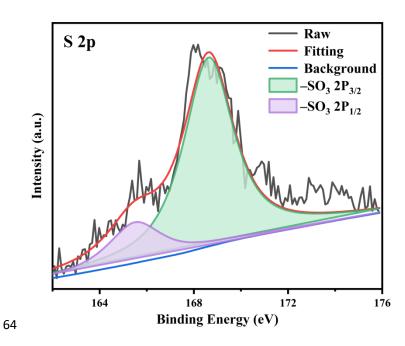
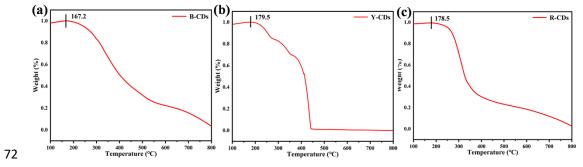



Fig. S7 High-resolution XPS spectra of S 2P of R-CDs.

73 Fig. S8 Thermogravimetric analysis (TGA) of B-CDs, Y-CDs, and R-CDs.

81 Table

82 Table S1 Table of fitting parameters for fluorescence lifetime of three CDs.

Sample	τ_1 (ns)	B_1	τ_2 (ns)	B_2	τ_{int} (ns)
B-CDs	2.70	312.42	8.55	244.24	6.87
Y-CDs	0.84	602.57	6.11	75.73	3.35
R-CDs	1.41	560.89	4.03	52.84	1.97

83

84

85 Table S2 Contents of C–C/C=C, C–N/C–O, and C=O bonds in the three CDs.

Sample	C-C/C=C	C-N/C-O	C=O
B-CDs	44.54%	44.81%	10.65%
Y-CDs	46.94%	41.94%	11.12%
R-CDs	50.99%	42.14%	6.87%

86

87 Table S3 Contents of Pyridinic N, Pyrrolic N, Graphitic N, and Amino N in the three

88 CDs.

Sample	Pyridinie N	Pyrrolie N	Graphitie N	Amino N
B-CDs	24.40%	24.87%	19.18%	31.53%
Y-CDs	23.48%	24.30%	30.58%	21.64%
R-CDs	15.53%	25.41%	39.16%	19.90%

90 Table S4 Contents of C-O, C=O, and S-O/S=O bonds in the three CDs.

Sample	С-О	C=O	S-O/S=O
B-CDs	64.07%	35.93%	
Y-CDs	59.83%	40.17%	
R-CDs	47.99%	30.98%	21.03%

91

92

93 Table S5 The HOMO-LUMO energy levels, the energy gap (ΔE), and the

94 corresponding predicted emission wavelength (based on the ΔE).

Mode	НОМО	LUMO	ΔΕ	λ (nm)
A	-4.96	-2.33	2.64	470.58
В	-4.68	-2.76	1.92	644.72
C	-4.67	-2.65	2.02	613.70
D	-4.65	-2.64	2.01	615.52
E	-5.10	-3.43	1.68	739.52