Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Fully biocompatible and biodegradable triboelectric nanogenerator based on PVA/Chitosan fibers and PLA fibers with enhanced output performance

Vida Sabzevaria, Mohammad Mahdi Abolhasania,*, Sara Azimia,b

^a Chemical Engineering Department, University of Kashan, 8731753153, Kashan, Iran.

^b Faculty of Petroleum and Chemical Engineering, University of Hormozgan, 7916193145, Bandar Abbas, Iran.

^{*}Corresponding Author

^{*}E-mail: abolhasani@kashanu.ac.ir

Note S1:

We have employed the well-established series capacitor model for TENGs to calculate surface charge density (σ). The V_{OC} of a TENG with two dielectric layers in series is [1]:

$$V_{OC} = \frac{\sigma d_1}{\varepsilon_0 \varepsilon_{r1}} + \frac{\sigma d_2}{\varepsilon_0 \varepsilon_{r2}} \tag{S1}$$

where d and ε_r are the thickness and relative permittivity of each layer. Solving for σ yields:

$$\sigma = \frac{V_{OC}}{\frac{\sigma d_1}{\varepsilon_0 \varepsilon_{r1}} + \frac{\sigma d_2}{\varepsilon_0 \varepsilon_{r2}}}$$
(S2)

For TENG based on PVA/Chitosan fiber and PLA fiber, the effective permittivity of PVA/Chitosan layer (ϵ_{r1}) has been calculated using the linear mixing rule based on volume fractions. The volume fraction of PVA (ϕ_{PVA}) has been derived from the known mass fraction (W_{PVA} =65%) and the material densities (ρ_{PVA} =1.19 g/cm³, $\rho_{Chitosan}$ =1.75 g/cm³):

$$\phi_{PVA} = \frac{\frac{W_{PVA}}{\rho_{PVA}}}{\frac{W_{PVA}}{\rho_{PVA}} + \frac{W_{Chitosan}}{\rho_{Chitosan}}}$$
(S3)

Then, the effective permittivity of PVA/Chitosan layer (ε_{r1}) has been calculated as:

$$\varepsilon_{r1} = \phi_{PVA} \times \varepsilon_{PVA} + \phi_{Chitosan} \times \varepsilon_{Chitosan}$$
(S4)

Using established literature values ϵ_{PVA} =6.0, $\epsilon_{Chitosan}$ =10.0, and ϵ_{PLA} =3 [2-4] with layer thicknesses of 50 µm for both ssamples, the calculation gives ϵ_{r1} ≈7.1. Applying Equation (S1) with the

measured V_{OC} =23.34 V for PVA/Chitosan fiber-based TENG, the calculated surface charge density is obtained as 9.10 μ C/m². To isolate the effect of the blend, we have performed the same calculation for the TENG based on pure PVA fiber. With the generated V_{OC} of 6.51 V. the calculation yields surface charge density of 2.54 μ C/m².

Table S1. Mass loss of the assembled bilayer sample during biodegradation in PBS buffer over time.

Immersion Time (Days)	Average Mass Loss of Sample (%)
10	9
20	42
40	75
60	96

References

- 1. Niu, S., et al., *Theoretical study of contact-mode triboelectric nanogenerators as an effective power source.* Energy & Environmental Science, 2013. **6**(12): p. 3576-3583.
- 2. Kaмaлoв, A.M., et al., *Electrophysical properties of chitosan-based composite films filled with single-wall carbon nanotubes.* Physics of Complex Systems, 2022. **3**(2): p. 60–65-60–65.
- 3. Uddin, M.J., et al., *High dielectric permittivity and percolative behavior of polyvinyl alcohol/potassium dihydrogen phosphate composites.* Journal of applied polymer science, 2012. **125**(3): p. 2363-2370.
- 4. Wu, W., et al., Significantly improved dielectric properties of polylactide nanocomposites via *TiO2 decorated carbon nanotubes*. Composites Part A: Applied Science and Manufacturing, 2019. **127**: p. 105650.