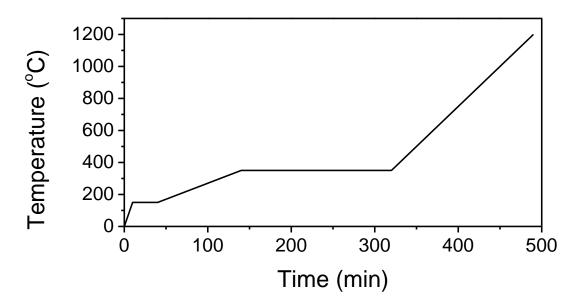
Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

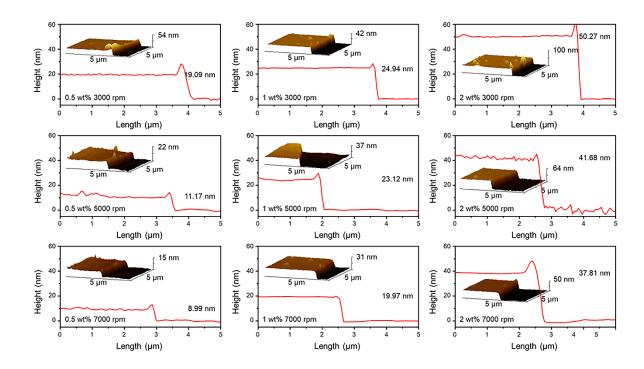
Electronic Supplementary Information

Silk-Derived Carbon Nanosheets for Transparent Conducting Electrodes on Flexible Substrates

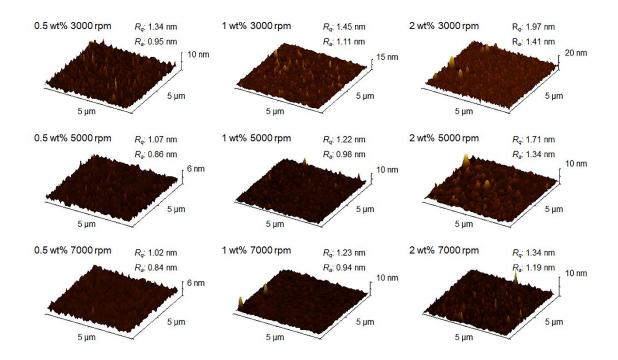
Se Youn Cho, a,b Moataz Abdulhafez, a Golnaz Najaf Tomaraei, a Jaegeun Lee, a,c and Mostafa Bedewy \star , a,d,e


^o Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States

^b RAMP Convergence Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea


^{c.} School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea

^d Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States


^{e.} Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States

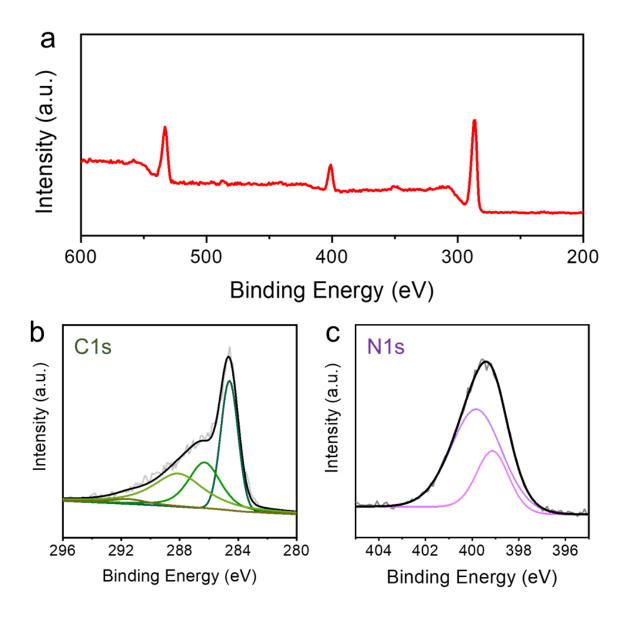
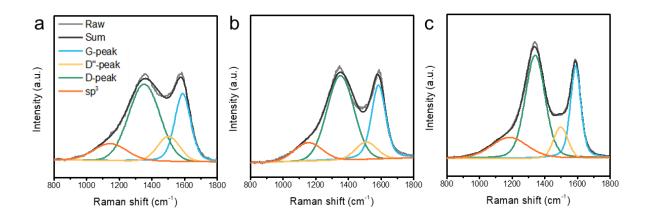
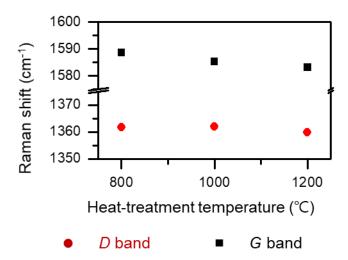
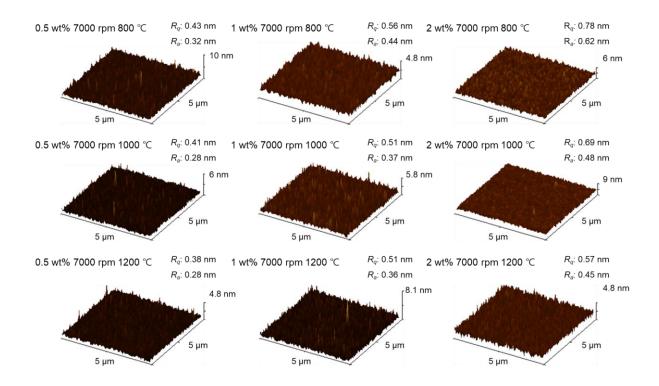

Figure S1. Temperature schedule of carbonization process for silk fibroin-based carbon nanosheets.

Figure S2. AFM images showing thickness dependence of the silk fibroin thin film on the spin rates and the concentrations of silk fibroin.


Figure S3. 3D AFM topography images showing the surface roughness of silk fibroin films prepared at different solution concentrations (0.5–2.0 wt.%) and spin-coating speeds (1000–7000 rpm). Ra values correspond to $5 \times 5 \mu m$ scan areas on SiO_2/Si substrates.


Figure S4. (a) XPS survey spectra of regenerated silk fibroin, and deconvoluted high-resolution spectra of (b) C1s and (c) N1s.


Figure S5. Contact angle of a water droplet on the surface of silk fibroin-derived carbon nanosheets prepared with different temperature.

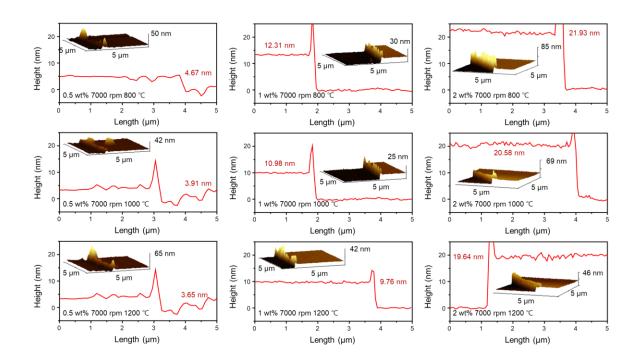

Figure S6. Deconvolved Raman spectra of SF-derived carbon nanosheets heat-treated at (a) 800 °C, (b) 1,000 °C, and (c) 1,200 °C.

Figure S7. Position of *D* and *G* bands of silk fibroin-based CNs according to heat-treatment temperature.

Figure S8. Surface roughness of silk fibroin-derived carbon nanosheet films with different concentration and HTT.

Figure S9. AFM images and thickness of carbonized silk fibroin thin films prepared using different concentration and HTT

Table S1. Elemental composition and chemical structure of regenerated SF by XPS Analysis

Element	Binding Energy	Assignment	Atomic Fraction by XPS	Atomic Fraction by theoretical Calculation*
	284.6 eV	C-C, C-H		
C 1s	285.9 eV	C-N	0.64	0.55
	288.2 eV	O=C-N		
O 1s	531.0 eV	O in amide	0.21	0.24
N 1s	398.50 eV	N in amide	0.15	0.21

^{*}Data calculated from the 10 main amino acid residue (Gly, Ala, Ser, Try, Val, Asp/Asn, Thr Glu/Gln, Phe, and lie) known as comprising 98.1% of the total composition of silk fibroin

Table S1. Comparison of representative carbon-based transparent conductive films, including graphene-, CNT-, and polymer-derived carbon nanosheets, highlighting their transmittance at 550 nm and sheet resistance values

Material	Transmittance @ 550 nm (%)	Sheet Resistance (Ω/sq)	Ref.	
single-layer graphene film	89.0~96.5	300~11200	S1	
bilayer graphene film	83.0~94.7	180~500	S1	
graphene/polymer nanocomposite	>90	~15	S2	
carbon-welded SWCNT	>90	41	S3	
CNT–PAA hybrid	91/84	150/60	S4	
polyimide-derived CNSs	54~89	1600~14700	S5	
polyethylene-derived CNSs	80~90	10 ² ~10 ³	S6	
Nitrogen-containing oligomers		100-2000	S 7	
PAN-derived CNSs	80~90	10 ² ~10 ³	S8	
CNS from silk (this work)	>98	~ 102	This wor	

References

- S1. S. Lee, K. Lee, C. H. Liu, and Z. Zhong, Nanoscale, 2012, 4(2), 639-644.
- S2. C. Biswas, I. Candan, Y. Alaskar, H. Qasem, W. Zhang, A. Z. Stieg, Y.-H. Xiw, and K. L. Wang, Sci. rep., 2018, 8, 10259.
- S3. S. Jiang, P. X. Hou, M. L. Chen, B. W. Wang, D. M. Sun, D. M. Tang, Q. Jin, Q.-X. Guo, D.-D. Zhang, K.-P. Tai, J. Tan, E. O. Kauppinen, C. Lui, and H.-M. Cheng, Sci. adv., 2018, 4(5), eaap9264.
- S4. Y. Zhou, R. Azumi, and S. Shimada, Nanoscale, 2019, 11(9), 3804-3813.
- S5. G. Souri, S. J. Yu, H. Yeo, M. Goh, J.-Y. Hwang, S. M. Kim, B.-C. Ku, Y. G. Jeong, and N.-H. You, RSC Adv., 2016, 6(58), 52509-52517.
- S6. M. Yi, M. Han, J. Chen, Z. Hao, Y. Chen, Y. Yao, and R. Sun, Nanomaterials, 2021, 12(1), 111.
- S7. K. K. Chung, N. Fechler, M. Patrini, P. Galinetto, D. Comoretto, and M. Antonietti, Carbon, 1015, 94, 1044-1051.
- S8. S. I. Na, Y. J. Noh, S. Y. Son, T. W. Kim, S. S. Kim, S. Lee, and H. I. Joh, Appl. Phys. Lett., 2013, 102(4).