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Material and characterization
Material

All chemical reagents in this research were purchased and used without further
purification from Tokyo Chemical Industry (TCI), Sigma-Aldrich, and Merck. Deionized (DI)
water (ASTM type 2) was obtained from SIEMENS Ultra Clear water purifier. AR grade
acetonitrile (MeCN), diethyl ether, dimethyl sulfoxide (DMSO), dimethyl formamide (DMF),
tetrahydrofuran (THF), and ethanol (EtOH) were purchased from RCI Labscan. THF was
distilled before use. Commercial-grade acetone, hexane, methanol (MeOH), and
dichloromethane (DCM) were distilled before use. All nitroaromatics and polyaromatic
hydrocarbons were analytical grade and used without further purification. Tap water samples
were collected from the Faculty of Science, Mahidol University, Thailand, while drinking water
samples were obtained from commercially available bottled water (Purra brand). POSS-OH and
POSS-CI were synthesized following the synthetic procedure in the previously reported

procedure.!>?
Characterization

All samples for 'TH-NMR, '*C-NMR, '"F-NMR, and ?’Si-NMR spectroscopic analysis
were prepared as solutions in different deuterated solvent systems including d-DMSO, CDCl;,
and CDCIl;/CFCl;, depending on the nature of samples. The NMR spectra were recorded on a
Bruker-AVANCE 400 MHz spectrometer, and the spectral data were reported in the form of
chemical shifts in ppm units. UV-Visible measurements of solution and solid samples were
performed on a UV-2600 Shimadzu spectrophotometer. Fluorescence spectroscopic
measurements were carried out on a Horiba FluoroMax 4+, and the spectral data were processed
using the FluoroMax software. High-resolution mass spectra (HRMS) were acquired using a
Bruker microTOF spectrometer operating in electrospray ionization (ESI) mode. Powder X-ray

diffraction (PXRD) data were collected on Bruker D8 Advance diffractometer CuKa radiation (A
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=0.15418 A). The experiment was conducted at an operating voltage of 40 kV and a current of
30 mA. Data collection was carried out over a 20 range of 5.00° to 50.00°, with a scan rate of 5°
per second. Thermogravimetric analysis (TGA) was carried out on an SDT 2960 SDT V3.0F

instrument under air flow at a heating rate of 10 °C-min" in a temperature range of 25-800 °C.

Synthesis

H_O HO Br

OOO NaBH, g e O PBr; OOO
—> —>
THF, reflux, 0.5 h Toluene, 1 h

CHO-An OH-An Br-An

Scheme S1 The synthesis of 9-(Bromomethyl)anthracene (Br-An)

9-(Bromomethyl)anthracene (Br-An). 9-Anthracencemethanol (OH-An) was prepared
following the previous report.> The OH-An (0.41 g, 2.02 mmol) and toluene (30 mL) were added
to a round-bottom flask and stirred under inert N,. Subsequently, PBr; (0.30 mL, 3.19 mmol) was
added slowly to the reaction at 0 °C and stirred for 1 h. The mixture was warmed to room
temperature, followed by the addition of saturated aqueous Na,COj5 (15 mL). The organic phase
was washed with water (20 mL) several times and brine (10 mL). The organic phase was dried
with Na,SO, and removed solvent in vacuo to obtain the final product as a greenish solid.* 'H-
NMR (400 MHz, CDCl;): & 8.50 (s, 1H), 8.32-8.30 (d, 2H), 8.06-8.03 (d, 2H), 7.67-7.63 (t, 2H),
7.53-7.49 (t, 2H), 5.55 (s, 2H); 13C-NMR (100 MHz, CDCl;): 8 131.7,129.9, 129.4, 129.3, 128.0,
126.9, 125.5, 123.7, 27.1; HRMS (ESI): Anal. calcd. for [C,sH;Br + H] * m/z=271.0117, found
m/z=271.0113.
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117 Nuclear Magnetic Resonance (NMR)
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120 Fig. S1 '"H-NMR spectrum of 9-(Bromomethyl) anthracene (Br-An), (400 MHz, CDCl3)
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Fig. S4 3C-NMR spectrum of (3-chloropropyl) hepta (i-butyl)octasilsesquioxane (POSS-CI),

(100 MHz, CDCl5).
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202 Fig. S7 BC-NMR spectrum of isobutyl-POSS-propyl-3-imidazole (POSS-Im), (100 MHz,
203 CDCly).
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Fig. S8 Si-NMR spectrum of isobutyl-POSS-propyl-3-imidazole (POSS-Im), (79 MHz,
CDCly).
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Thermal Gravimetric Analysis (TGA)

Sample: POSS-T7-Cl
Size: 4.5280 mg

File: C:\TA\Data\SDT\Mu\POSS-T7-CI.001

DSC-TGA Operator: MUSCCH
Method: Ramp 20C/min to 800C_Air Run Date: 9-Nov-22 17:12
Instrument: 2960 SDT V3.0F
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318 Fig. S15 Thermal gravimetric analysis (TGA) of POSS-Cl under air.
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Sample: POSS-imidazole
Size: 6.6674 mi

g
Method: Ramp 20C/min to 800C_Air
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File: C:\TA\Data\SDT\Mu\POSS-imidazole.001

DSC-TGA Operator: MUSCCH

Run Date: 8-Nov-22 10:33

Instrument: 2960 SDT V3.0F
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321 Fig. S16 Thermal gravimetric analysis (TGA) of POSS-Im under air.
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324 Fig. S17 Thermal gravimetric analysis (TGA) of POSS-Im-An-Br under air.
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Powder X-ray Diffraction Analysis (PXRD)

Normalized intensities
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340 Fig. S18 The comparison PXRD pattern of POSS-CI, POSS-Im, and POSS-Im-An-Br.
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354 Fig. S19 The comparison PXRD pattern of POSS-Im-An-Br, POSS-Im-An-BF,, and POSS-Im-
355 AH'PF6.

356
357 Anion Exchange

358 POSS-Im-An-Br (50 mg) was added to the vial, then 1:1 (CHCl;: H,0) into this vial.

359 Following, the excess of NaBF, and KPF¢ were added to each vial under the same conditions.
360 Then, each of the mixed solutions was extracted with CHCl;. The organics phase was kept and
361 washed with water to remove residual salt. After that, the organic phase evaporated and dried.
362 The final product was changed entirely to POSS-Im-An-BF4(NaBF,) and POSS-Im-

363 An-PF4 (KPFg), which obtained the pale-yellow products. The change in anion products was
364 characterized using 'H, "*C, and "F-NMR.

365

366
367 High Resolution Electrospray Ionization Mass Spectrometry (HR-ESI-MS)

368
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Mass Spectrum List Report

Analysis Info
Analysis Name VE_CP_T7-Cld Acquisition Date  1/8/2022 2:14:35 PM
Method Ture_wide_150-600_NATTHAPAT2021.m Operator Administrator
Sample Name  T7-Cl Instrument micrOTOF 72
NATTHAPAT_2022_01_08
Acquisition Parameter SetCorector Fill 50V
Source Type ESI len Polarity Positive Set Pulsar Pull 337V
Scan Range nia Capillary Exit 1800 V Set Pulsar Push 337V
Scan Begin 50 miz Hexapole RF 6000 Y Set Reflector 1300V
Scan End 3000 miz Skimmer 1 700V Set Flight Tube 9000V
Hexapole 1 250V Set Detector TOF 2205V
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Mass Spectrum List Report
Analysis Info
Analysis Name  VE_CP_Timi-up.d Acquisition Date  1/12/2022 10:12:45 AM
Method Tune_wide_130-400_NATTHAPAT2021.m Operator Administrator
Sample Name  Timi-up Instrument micrOTOF 72
NATTHAPAT_2022_01_12
Acquisition Parameter Set Comector Fill 50V
Source Type ESI len Polarity Positive Set Pulsar Pull 337V
Scan Range nfa Capillary Exit 1500V Set Pulsar Push 337V
Scan Begin 50 mfz Hexapole RF 400.0V Set Reflector 1300 W
Scan End 3000 mfz Skimmer 1 To.ov Sat Flight Tube 9000V
Hexapole 1 250V Set Detector TOF 2285V
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Fig. S20 High resolution of ESI-MS spectrum of POSS-Cl dissolved in CH,Cl,, and POSS-Im

dissolved in methanol.
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Mass Spectrum List Report

Analysis Info Acquisition Date  11/6/2023 3:33:24 PM
Analysis Name  D:\Data\SCMU_DATA\SCNS_11_2023\02\VECP20231106_Br1000001.d

Method MUSCNS_ESI_P0OS1_600-3000_2023.m Operator Demo User

Sample Name CPSQBr1 Instrument  compact 8255754.20333
Comment

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 2.5Bar
Focus Not active Set Capillary 3500 V Set Dry Heater 200°C
Scan Begin 500 m/z Set End Plate Offset -500 V Set Dry Gas 4.0 Vmin
Scan End 3000 miz Set Charging Voltage 2000V Set Divert Valve Source
Set Corona 0nA Set APCI Heater 0°C
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Mass Spectrum List Report

Analysis Info Acquisition Date  11/6/2023 3:39:47 PM
Analysis Name  D:\Data\SCMU_DATA\SCNS_11_2023\02\VECP20231106_BF4000001.d

Method MUSCNS_ESI_POS1_600-3000_2023.m Operator Demo User

Sample Name  CPSQBF4 Instrument  compact 8255754.20333
Comment

Acquisition Parameter

Source Type ESI lon Polarity Positive Set Nebulizer 2.5Bar
Focus Not active Set Capillary 3500 V Set Dry Heater 200°C
Scan Begin 500 m/z Set End Plate Offset -500 V Set Dry Gas 4.0 limin
Scan End 3000 m/z Set Charging Voltage 2000 V Set Divert Valve Source
Set Corona 0nA Set APCI Heater 0°C
Intens.
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Mass Spectrum List Report
Analysis Info Acquisition Date  11/6/2023 3:44:00 PM
Analysis Name  D:\Data\SCMU_DATA\SCNS_11_2023\02\VECP20231106_BF6000001.d
Method MUSCNS_ESI_POS1_600-3000_2023.m Operator Demo User
Sample Name  CPSQBF6 Instrument  compact 8255754.20333
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UV-Vis and Fluorescent Spectrophotometry Study

A 1 x 1073 M stock solution of POSS-Im-An-Br was prepared in various solvents,

including DMSO, MeOH, DMF, EtOH, MeCN, THF, and water. For UV-Visible and

fluorescence spectroscopic measurements, the stock solution was diluted to 1 x 10> M and 1 x

10 M, respectively, for each solvent. Approximately 2 mL of each diluted solution was

transferred into a cuvette for analysis. The UV-Visible absorption spectrum and the fluorescence

emission spectra (FL intensity) were measured.

Table S1 The conclusion of Aaps (nm) and A, (nm) in various solvents.

Solvent Aaps (nm) Aem (NM)

Deionized water (DI water) 351/368/388 394/417/440
Methanol (MeOH) 350/368/388 392/415/440
Ethanol (EtOH) 350/371/386 393/416/439
Acetonitrile (MeCN) 348/367/386 392/415/440
Dimethyl sulfoxide (DMSO) 353/371/391 396/416/440
Dimethylformamide (DMF) 350/369/389 394/417/441
Tetrahydrofuran (THF) 352/368/389 394/416/440
15 % (v/v) water in DMSO 353/371/391 396/419/440
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392 Fig. S22 Normalized UV-Visible absorption spectra and fluorescent emission spectra of POSS-
393 Im-An-Br in various solvents.
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Solid UV-Visible and Fluorescent Spectroscopy

The experiment involved placing POSS-Im-An-Br, POSS-Im-An-BF,, and POSS-Im-
An-PF4 samples (approximately 50 mg each) into a special holder for solid-state UV—Visible and
fluorescence spectroscopy. In the UV—Visible spectroscopic measurements, the excitation

maximum was observed within the range of 300-500 nm, while in the fluorescence

measurements, the emission maximum appeared between 375—650 nm.
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Fig. S23 The normalized UV-Visible and fluorescence spectra of the solid-state of POSS-Im-
An-Br, POSS-Im-An-BF,, and POSS-Im-An-PF.

Effect of Water Content Study

To find the aggregation behavior of POSS-Im-An-Br after having water and the
conditions for studying photophysical properties, selectivity, sensitivity, and quantitation. The
water fraction in various ratios from 0 to 100 % (v/v) of Deionized water in DMSO was prepared
as 1 x 10 M of POSS-Im-An-Br stock solution. Then, each stock solution was diluted to 1 x 10
6 M. The 2 mL of dilution was pipetted and added to the cuvette. After this, the samples were
recorded by fluorescence spectroscopy and photographed. The results demonstrate a change in

fluorescence emission spectrum in different water contents in DMSO.

S28



Supporting Information
412 Fluorescence Titration

413 The POSS-Im-An-Br solution in 15% (v/v) water in DMSO (1 x 10-¢ M) was pipetted
414 into a cuvette, and the stock solution of analytes (1 x 10-3 M) that included NPY, PCA, NNP,
415 ACA, NAA, PA, and DNP was added with 5 equiv., per time. After that, the fluorescence

416 emission spectrum was recorded. The photographs were taken with the naked eye using a mobile

417 phone.
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419 Fig. S24 Fluorescence titration spectra of POSS-Im-An-Br with a) PA, b) DNP, ¢) NAA, d)
420 ACA, e) PCA, f) NPY, and g) NNP in 15% (v/v) water in DMSO.
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Analysis

Supporting Information

An-Br in various analytes. Quantitative parameters, including the limit of detection (LOD), limit

of quantitation (LOQ), Stern—Volmer rate constant (Ky,), and binding constant (K,), were
determined from fluorescence titration and calculated by following graph plotting between FL

intensity and concentration of each analyte, the Stern—Volmer equation, and the Benesi—

Hildebrand equation, respectively, as concluded in Table 1.3

Measurement of Stern-Volmer rate (K,)
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Fig. S25 Stern—Volmer (SV) plots of POSS-Im-An-Br with a) PA, b) DNP, c) NAA, d) ACA, ¢)
PCA, f) NPY, and g) NNP in 15% (v/v) water in DMSO were obtained from fluorescent

emission at A.,= 419 nm, and the Stern—Volmer constants (K,) are summarized in Table 1.
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Measurement of the binding constant (K,)

The association constant (K,) was calculated according to the Benesi—Hildebrand
equation as follows: fluorescence experiment.

1

1 1

= +
1_10 K(Imax_IO)[A] (Imax_IO)

1, 1s the fluorescence intensity of the solution in the absence of analytes (A), 7 is the
fluorescence record in the presence of analytes, and /.« 1s the fluorescence in the addition of
[A]max- The association constant (K,) could be calculated from the slope of a straight-line plot

between 1/(/-1,) against 1/[A].
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Fig. S26 Benesi—Hildebrand plot of POSS-Im-An-Br with a) PA, b) DNP, ¢) ACA, d) NAA, ¢)
PCA, f) NPY, and g) NNP in 15%DI water/DMSO condition from fluorescent emission at Ay, =
419 nm, and binding constant (K,) as concluded in Table 1.
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445 Measurement of the limit of detection (LOD) and limit of quantification (LOQ)

446 The limit of detection (LOD) and limit of quantification (LOQ) were determined from
447 fluorescence titration experiments using the following equations:

448

449 LOD =30/S

450 LOQ = 100/S

451

452 where o represents the standard deviation of the response, and S denotes the slope of the

453 calibration curve.
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454
455 Fig. S27 The fluorescence intensity of POSS-Im-An-Br (1 x 10 M) versus a) PA, b) DNP, c)
456 ACA, d) NAA, e) PCA, f) NPY, and g) NNP concentration (1 x 10 M) at Ae, = 419 nm in 15%
457 (v/v) water/DMSO.

458

S32



459

460
461
462
463
464
465
466
467
468
469

470

471
472

473

474

475

476

477

478

479

Selectivity Test
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To assess changes in fluorescence emission for various analytes, fluorescence

spectroscopy was employed, and observations were also made visually with the eye. The results

were recorded in a fluorescence emission spectrum (Fig. S28) and documented with photographs

taken under UV light of the sensor exposed to different analytes (Fig. S29). For measuring the
selectivity of POSS-Im-An-Br toward NACs and PAHs, 2 mL of POSS-Im-An-Br solution

(1 x 10 M) in 15% (v/v) water in DMSO was pipetted into a cuvette and a vial. Subsequently,

50 equiv. of each analyte stock solution (1 x 104 M in 15% (v/v) water in DMSO) were added to

the sensor using a microsyringe. The mixture was stirred for 2 minutes before recording the

fluorescence spectra. Additionally, photographs of these samples were taken under UV light

using a smartphone for visual comparison.
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Fig. S28 Selectivity of POSS-Im-An‘Br at 1 x 10® M with different a) NACs and b) PAHs in

15% (v/v) water in DMSO.
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480
a) POSS-Im-An-Br PA DNP ONP MNP PNP PBP PIP PHB PNB PBB
b) POSS-Im-An-Br NPY PCA NAA ACA NNP NPA NAP BNP
{
POSS-Im-An-Br  PYR BPY DPY ANT BAA PHN BPN
481

482 Fig. S29 The photographs of the POSS-Im-An‘Br (1 x 10-¢ M) in 15% (v/v) water in DMSO
483 with a) NACs and b) PAHs 50 equiv. per time (1 x 103 M) recorded in room light and under UV
484 light at 365 nm.

485

486
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487 Table S2 Comparison of fluorescence-based sensors reported for the detection of PA and DNP, and selected PAH derivatives.

System Target analytes LOD K (M™) Solvent Ref.
(M)

_ 0.72/ 2.89 x 10°/ 15 % (v/v) This
POSS-Im-An-Br PA/DNP 0.64 2.29 % 10 H,0/DMSO work
Fluoranthene based fluorescent sensor PA 0.87 9.9 x 10* EtOH 6

. 30 % (v/v)
4 7
Coumarin based PA 0.62 1.22 x 10 DMEF/H,0
Pyridine-based PA 1.75 4.106 THF 8
3.5 x 10%/ 9
Metal complex-based fluorescent PA/DNP 1.85/2.21 555 x 10 MeOH
AIEE active copolymer Dioctylfluorene PA o 4.960 x 103 THF 10
bis(1,3-propandiol) ester
Zn(II)-based MOFs
(1) PA 3.5 1.53 x 104 75 % (V/v) i
) 1.8 3.11 x 10* DMF/H,0
Hyperbranched poly(silylenephenylene) PA 4.3 1.5 x 103 THF/H,O 12
Dabsyl derivative PA 7.2 * MeCN 13
Poly-alizarin red S/carbon paste electrode Anthracene, 24 * Water 14
y p Phenanthrene
Conjugated-polymer fluorescence sensor arra Anthracene 2.4 * DMF 15
Jug PoLy Y (example) '
ifiilte nanowall flexible electrochemical Anthracene 100-350 « MeCN/Water 16

488 * No data reported
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489 Response Time Study
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Fig. S30 Time-dependent fluorescence intensity changes of POSS-Im-An-Br (1 x 10-° M) upon
the addition of 50 equiv. of PA (a), DNP (b), NNP (c), NAA (d), ACA (e), NPY (f), and PCA (g)
in 15% (v/v) water/DMSO were monitored at 419 nm from 0 to 180 s.
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494 Binding Stoichiometry Analysis (Job’s plot)

Stock solutions of POSS-Im-An-Br (1.0 x 10> M) and the analyte (5.0 x 10-3 M) were
prepared in 15% (v/v) water/DMSO. Job’s plot analyses were performed using the continuous
variation method, where the host and guest solutions were mixed in varying mole fractions while
maintaining a constant total concentration of 1.0 x 10-® M. Fluorescence spectra were recorded
under identical conditions. The Job’s plots were constructed by plotting AF x X, versus X,

495
496
497
498
499

500 where AF is the change in fluorescence intensity relative to the free host, and X} is the mole
501 fraction of the host.
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503 Fig. S31 Job’s plot for POSS-Im-An-Br with PA (a), DNP (b), NNP (c), NAA (d), ACA (e),
504 NPY (f), and PCA (g) at a constant total concentration of 1 x 10 M in 15% (v/v) water/DMSO.
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Determination of Quantum Fluorescence Yield

The quantum efficiency (®,) of POSS-Im-An-Br was measured using fluorescence
spectroscopy under the following conditions: slit width of 3 nm, integration time of 1 second,

and a BaO-coated spherical cuvette. To perform the measurement, 2 mL of the sensor solution

was added to the cuvette, which was then covered with the spherical cube. The quantum yield

was calculated using the following equation, based on comparison between the solvent and the
sensor solution, with corrections applied for the spherical cuvette (from Horiba specifications):

Sample Corrected (Intensity) Sample Corrected (Intensity)

Sample Corrected (Intensity)

A area under emission curve

A area under absorption curve
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—— Blank
72000
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515 Fig. S32 The quantum efficiency was measured for 2 mL of POSS-Im-An-Br (1 x 10 M) in the
516 presence of 25 equiv. of PA and DNP (1 x 104 M) in 15% (v/v) water/DMSO.
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Fig. S33 Quantum efficiency of 2 mL of POSS-Im-An-Br (1 x 10® M) in the presence of 25
equiv. of NNP, ACA, and NAA (1 x 10* M) in 15% (v/v) water/DMSO.
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Fig. S34 Quantum efficiency of 2 mL of POSS-Im-An-Br (1 x 10-® M) in the presence of 25
equiv. of PCA and NPY (1 x 10* M) in 15% (v/v) water/DMSO.
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The Effect of Ionic Strength

a) 0.0 equiv. of PA b)

- 1.5 50.0 equiv. of PA

15

=

=]

© POSS-Im-An-Br
‘S 1.0

»

2 POSS-Im-An-Br
g 0.57 with PA (50 equiv.)
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o
(=]
1

0.00M 0145M 0.30M 045M 0.60M

Concentrations of NaCl

Fig. S35 (a) Fluorescence emission signals of POSS-Im-An-Br (1 x 10) in 15% (v/v)
water/DMSO, in the presence and absence of 50.0 equiv. of PA, with 100 pL of different NaCl
concentrations. (b) Photographs of POSS-Im-An-Br in the presence and absence of 50.0 equiv. of
PA in 100 pL of different NaCl concentrations, under UV light at 365 nm.
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Anti-interference studies and real water sample analysis

Stock solutions (5 x 103 M) of inorganic salts (NaCl, KCl, MgCl,, CuCl,, CoCl,, SnCl,,
MnCl,, ZnCl,, NiCl,, Pb(NOs),, NaBr, Nal, NaNO3, NaClO,, NaHSO,, and NaSCN) were prepared
in water, and DMSO was subsequently added to obtain a final solvent composition of 15% (v/v)
water/DMSO. For anti-interference measurements of POSS-Im-An-Br toward NACs and PAH
derivatives, 2.0 mL of a POSS-Im-An-Br solution (1 x 10 M) in 15% (v/v) water/DMSO was
transferred into a cuvette. Subsequently, 50 equiv. of each analyte (1 x 10* M) were added to
the POSS-Im-An-Br solution using a microsyringe, and the corresponding fluorescence spectra
were recorded as control measurements. Thereafter, 50 equiv. of each inorganic salt solution
were added to the POSS-Im-An-Br solution containing the respective analyte, and the
fluorescence responses were recorded to evaluate the anti-interference performance.

a) _ 2o0-

B POSS-Im-An-Br POSS-Im-An-Br + PA + Additives
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FL intensity ( x 10” counts)

b 2.0+
) N Bl POSS-Im-An-Br POSS-Im-An-Br + DNP + Additives
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8 1.5+
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i
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: =0
& 0.5+
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Fig. S36 Fluorescence emission signals of POSS-Im-An-Br in the absence (blue bars) and
presence (grey bars) of the PA (a) and DNP (b) in the presence of additives (50 equiv.) : (1)
blank, (2) Na*, (3) K*, (4) Mg?", (5) Mn?*, (6) Co**, (7) Ni?*, (8) Cu?*, (9) Zn?', (10) Pb?*, (11)
Br, (12) I, (13) NOs-, (14) CIO4, (15) HSO4, and (16) SCN-.
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Fig. S37 Fluorescence intensities of POSS-Im-An-Br in the absence (blue bars) and presence

(grey bars) of the NNP (a), NAA (b), and ACA (c) in the presence of additives (50 equiv.): (1)
blank, (2) Na*, (3) K*, (4) Mg?", (5) Mn?*, (6) Co**, (7) Ni?*, (8) Cu?*, (9) Zn?', (10) Pb**, (11)

Br, (12) I, (13) NOy, (14) ClOy, (15) HSOy, and (16) SCN-.
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589

590 Fig. S38 Fluorescence intensities of POSS-Im-An-Br in the absence (blue bars) and presence
591 (grey bars) of the NPY (a) and PCA (b) in the presence of additives (50 equiv.): (1) blank, (2)
592 Na*, (3) K*, (4) Mg?*, (5) Mn?*, (6) Co?*, (7) Ni%*, (8) Cu?*, (9) Zn*', (10) Pb*', (11) Br-, (12) I,
593 (13) NOs, (14) CIO4, (15) HSO47, and (16) SCN-.
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605 For real water sample analysis, tap water (Faculty of Science, Mahidol University,

606 Thailand) and commercial mineral water were used without further pretreatment. Stock solutions
607 of NACs (5 x 1073 M) were prepared by dissolving the analytes directly in the corresponding

608 water matrices (tap water or mineral water). For PAH-based compounds with limited water

609 solubility, stock solutions were initially prepared in DMSO. Specifically, one drop of DMSO
610 was added to each PAH compound, followed by gentle heating and magnetic stirring until

611 complete dissolution was achieved. Subsequently, the appropriate water source was added to

612 obtain stock solutions with a concentration of 5 x 103 M. These stock solutions were further

613 diluted with the same water source to achieve the desired concentrations (1 x 10~* M) for spiking
614 experiments. In the real water sample experiments, 25 equiv. of the spiked real
615 water samples were added to a solution of POSS-Im-An-Br (1 x 10°M) in 15% (v/v)

616 water/DMSO, and the corresponding fluorescence responses were recorded.

617

618 Table S3. Validation of POSS-Im-An-Br for the detection of PA, DNP, NNP, NAA, ACA, NPY,
619 and PCA in real water samples, including recovery results.

Sensor Water sample Added(uM) Found (uM) Recovery (%)

Tap water 25 30 105
PA
Mineral water 25 26 120
Tap water 25 32 128
DNP
Mineral water 25 31 125
Tap water 25 31 124
NNP
Mineral water 25 25 102
Tap water 25 18 72
NAA
Mineral water 25 22 18
Tap water 25 20 79
ACA
Mineral water 25 22 89
Tap water 25 33 131
NPY
Mineral water 25 27 110
Tap water 25 * *
PCA
Mineral water 25 * *
620 * outlier
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642 Fig. S39 Calibration plot obtained by the addition of different concentrations of PA (a), DNP (b),
643 NNP (c), NAA (d), ACA (e), NPY (f), and PCA (g) to POSS-Im-An-Br in 15 % (v/v)
644 water/DMSO for the estimation of analyte in different water resources.
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645 TH-NMR Titration

646 The "H-NMR titration study confirmed the interaction between the POSS-Im-An-Br and

647 selective analytes for the sensing mechanism. The 5 x 10> M of POSS-Im-An-Br solution was

648 prepared in CDCl; and dg-DMSO, and 2.5 x 10! M of NPY, PCA, NAA, ACA, and NNP in

649 CDCl; and dg-DMSO, while PA and DNP in only de-DMSO. Various types of analyte solutions

650 were added to the NMR tube by micro syringe from 0-5 equiv. and NMR spectra were collected

651 after the final addition of each analyte.
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653 Fig. S40 Partial "TH-NMR titration of POSS-Im-An‘Br (5 x 103 M) and 0—5 equiv. of PA in
654 de-DMSO.
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659 Fig. S41 Partial "TH-NMR titration of POSS-Im-An-Br (5 x 103 M) and 0-5 equiv. of DNP in
660 ds-DMSO.
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Fig. S42 Partial 'TH-NMR titration of POSS-Im-An-Br (5 x 10> M) and 0-5 equiv. of NAA in
CDCls.
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683 Fig. S43 Partial 'H-NMR titration of POSS-Im-An‘Br (5 x 103 M) and 0-5 equiv. of ACA in
684 CDCls.
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696 Fig. S44 Partial "TH-NMR titration of POSS-Im-An-Br (5 x 103 M) and 0-5 equiv. of NPY in
697 CDCls.
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708 Fig. S45 Partial 'H-NMR titration of POSS-Im-An-Br (5 x 103 M) and 0-5 equiv. of PCA in
709 CDCls.
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Fig. S46 Partial 'H-NMR titration of POSS-Im-An-Br (5 x 103 M) and 0-5 equiv. of NNP in
CDCl;.
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All the calculations were done using aug-cc-pVDZ/®97x-D3 in DMSO with DMSO as a
solvent from SMD model. As aug-cc-pVDZ does not cover the iodine atom, in PIP, ma-def2-
SVP was assigned to only the iodine atom, while the other atoms still bear aug-cc-pVDZ. def2/J,
aug-cc-pVTZ/JK, and aug-cc-pVTZ/C auxiliary basis sets were used, except for PIP which
def2/], def2/JK, def2-TZVP/C, were assigned. The optimized geometry was verified through
vibrational frequencies. All calculations were performed by ISCE2, A*STAR cluster with AMD
Genoa 9654 DP @ 2.4GHz using 48 cores.
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Fig. S47 a) MO energy diagram of PAH derivatives where the HOMO and LUMO of EtIm-An
were plotted in dash lines. b) AE, pgrof PAH derivatives in comparison to Etlm-An. ¢) MO
energy diagram of NACs where the HOMO and LUMO of EtIm-An were plotted in dash lines.
d) AE ;. perof NACs in comparison to Etlm-An.
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Geometry HOMO-1 HOMO LUMO LUMO+1

748 Etlm-An -8.983 eV -7.665 eV -0.379 eV 0.957 eV

749 Fig. S48 FMOs and optimized geometry of active size of POSS-Im-An-Br (Etlm-An), HOMO
750 and LUMO energy values were shown in eV.

751
Geometry HOMO
ANT -7.510 eV -0.137 eV
BAA -7.644 eV
ACA
NAA -8.021 eV -0.725 eV
752

753 Fig. S49 FMOs and optimized geometry of PAHs (anthracene derivatives), HOMO and LUMO
754 energy values were shown in eV.
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Geometry HOMO LUMO

&

NAP -8.205 eV

&

BNP -8.323 eV 0.268 eV

2ts

NPA -8.323 eV 0.268 eV

2es

NNP -8.827 &V -0.649 6V
755

756 Fig. S50 FMOs and optimized geometry of PAHs (naphthalene derivatives), HOMO and LUMO

757 energy values were shown in eV.

758
Geometry HOMO LUMO
BPN -8.107
PHN -8.231 0.251
759

760 Fig. S51 FMOs and optimized geometry of PAHs (phenanthroline derivatives), HOMO and
761 LUMO energy values were shown in eV.
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LUMO

Geometry

PYR -7.555 eV

DPY -7.904 eV -0.474 eV

BPY -7.737 eV

PCA -7.847 eV

NPY -8.043 eV -0.819 eV

762

763 Fig. S52 FMOs and optimized geometry of PAHs (pyrene derivatives), HOMO and LUMO
764 energy values were shown in eV.
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765
Geometry HOMO LUMO
f
bed
PA -10.637 eV -2.007 eV
X
DNP -10.045 eV -1.455 eV
: |
ONP -9.270 eV -0.919 eV
e &%
MNP -9.321 eV -0.689 eV
g . -
766 PNP -9.413 eV -0.463 eV

767 Fig. S53 FMOs and optimized geometry of NACs (PA, DNP, ONP, MNP, and PNP), HOMO
768 and LUMO energy values were shown in eV.

769
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Geometry HOMO LUMO

PBP -8.532 eV 0.823 eV

PIP -7.767 eV 0.047 eV

PHB -8.989 eV 0.221 eV

PNB -10.386 eV -1.361 eV

PBB -10.020 eV -0.305 eV

773 Fig. S54 FMOs and optimized geometry of NACs (PBP, PIP, PHB, PNB, and PBB), HOMO and
774 LUMO energy values were shown in eV.
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