Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Selective molecular tailoring for retarders with achromaticity or a wide field-of-view

Hansol Lee^{1†}, Ja Won Kim^{2†}, Dae Hyeon Kwon^{3†}, Yi Young Kang², Yumi Cho⁴, Yu-Jin Choi², Jae-Won Ka^{2,*}, Sang Kyu Kwak^{3,*}, Ji-Hoon Lee^{1,*}

- ² Advanced Functional Polymers Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- ³ Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
- ⁴ School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- † These authors equally contributed to this paper
- * Authors to whom with correspondence: jwka@krict.re.kr (J.-W. Ka), skkwak@korea.ac.kr (S. K. Kwak), jihoonlee@jbnu.ac.kr (J.-H. Lee)

¹ Division of Electronics Engineering, Jeonbuk National University, Jeonju 54896, Korea

1. Synthesis conditions of HRM molecules

Fig. S1. Synthetic scheme of HRM molecules by alkyl chain length

2-formyl-1,4-phenylene bis(4-(4-(acryloyloxy)butoxy)benzoate) (1)

To a solution of 4-((4-(acryloyloxy)butyl)oxy)benzoic acid (8.42 g, 31.86 mmol) in THF (25 mL) was added triethylamine (14.13 mL, 101.36 mmol), and methanesulfonyl chloride (3.36 mL, 43.44 mmol) at 0 °C. The reaction mixture was stirred for 3h under nitrogen atmosphere. To the reaction mixture was added to 2,5-dihydroxybenzaldehyde (2.0 g, 14.48 mmol) in THF (10 mL). The reaction mixture was further stirred for 18 h at 60 °C. The reaction was quenched by water and the mixture was extracted with ethyl acetate. The organic solvent was removed under reduced pressure and the residue was purified by washing with ethanol to give a white solid (5.5 g, 60%). 1 H NMR (500 MHz, CDCl₃) δ 10.21 (s, 1H), 8.19 – 8.14 (m, 4H), 7.79 (d, J = 2.9 Hz, 1H), 7.54 (dd, J = 8.8, 2.9 Hz, 1H), 7.39 (d, J = 8.8 Hz, 1H), 7.01 – 6.98 (m, 4H), 6.44 – 6.40 (m, 2H), 6.16 – 6.10 (m, 2H), 5.84 (dt, J = 10.4, 1.1 Hz, 2H), 4.27 (t, J = 5.9 Hz, 4H), 4.13 – 4.09 (m, 4H), 1.95 – 1.89 (m, 8H); UV-Vis (CH₂Cl₂, nm) 269 nm.

HRM-N4

To a solution of compound 1 (0.5 g, 0.79 mmol) in ethanol (20 mL) was added p-phenylenediamine

(43 mg, 0.40 mmol). The reaction mixture was stirred for 5 h at 60 °C. After that, the reaction mixture was cooled to room temperature, and the resulting solid was filtered. The crude mixture was washed with ethanol to give a yellow solid (0.35 g, 66%). 1 H NMR (500 MHz, CD₂Cl₂) δ 8.60 (s, 2H), 8.18 – 8.15 (m, 8H), 8.05 (d, J = 2.8 Hz, 2H), 7.39 (dd, J = 8.8, 2.8 Hz, 2H), 7.33 (d, J = 8.8 Hz, 2H), 7.13 (s, 4H), 7.03 – 6.99 (m, 8H), 6.38 (ddd, J = 17.4, 4.6, 1.5 Hz, 4H), 6.13 (ddd, J = 17.4, 10.5, 4.7 Hz, 4H), 5.82 (ddd, J = 10.4, 6.3, 1.5 Hz, 4H), 4.23 (td, J = 6.1, 4.1 Hz, 8H), 4.11 (q, J = 5.8 Hz, 8H), 1.91 (m, 16H); FAB-MS m/z: calcd for $C_{76}H_{72}N_2O_{20}$ 1332.47, found: 1333 [M+H]⁺; UV-Vis (CH₂Cl₂, nm) 268 nm, 364 nm.

2-formyl-1,4-phenylene bis[4-(6-acryloyloxyhexyloxy)]benzoate (2)

To a solution of 4-(6-acryloyloxyhexyloxy)benzoic acid (9.35 g, 31.86 mmol) in THF (60 mL) was added to triethylamine (14.1 mL, 101.36 mmol) and methanesulfonyl chloride (3.4 mL, 43.44 mmol) at 0 °C. The reaction mixture was stirred for 3h. To the reaction mixture was added to 2,5 dihydroxybenzaldehyde (2.00 g, 14.48 mmol) in THF (10 mL) The reaction mixture was further stirred for 18 h at 65 °C. The reaction was quenched by water and the mixture was extracted with ethyl acetate. The organic solvent was removed under reduced pressure and the residue was purified by washing with ethanol to give a white solid (7.1 g, 71%). ¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.16 (dd, J = 12.3, 8.9 Hz, 4H), 7.79 (d, J = 2.8 Hz, 1H), 7.54 (dd, J = 8.8, 2.9 Hz, 1H), 7.39 (d, J = 8.8 Hz, 1H), 6.99 (d, 4H), 6.41 (dd, J = 17.3, 1.3 Hz, 2H), 6.13 (dd, J = 17.3, 10.4 Hz, 2H), 5.83 (dd, J = 10.4, 1.2 Hz, 2H), 4.19 (t, J = 6.6 Hz, 4H), 4.07 (td, J = 6.3, 3.6 Hz, 4H), 1.86 (m, 4H), 1.77 – 1.71 (m, 4H), 1.60 – 1.45 (m, 8H); UV-Vis (CH₂Cl₂, nm) 269 nm.

HRM-N6

To a solution of compound 2 (0.5 g, 0.73 mmol) in ethanol (15 mL) was added p-phenylenediamine (39 mg, 0.36 mmol). The reaction mixture was stirred for 6 h at 60oC. After that, the reaction mixture was cooled to room temperature, and the resulting solid was filtered. The crude mixture was washed with

ethanol to give a yellow solid (0.47 g, 89%). ¹H NMR (400 MHz, Methylene Chloride-d₂) δ 8.60 (s, 2H), 8.16 (dd, J = 8.9, 2.1 Hz, 8H), 8.05 (d, J = 2.8 Hz, 2H), 7.39 (dd, J = 8.8, 2.8 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H), 7.00 (dd, J = 8.9, 2.4 Hz, 8H), 6.39 – 6.33 (m, 4H), 6.12 (ddd, J = 17.3, 10.4, 3.6 Hz, 4H), 5.82 – 5.78 (m, 4H), 4.16 (dt, J = 6.7, 3.4 Hz, 8H), 4.07 (d, J = 4.7 Hz, 8H), 1.84 (s, 8H), 1.74 – 1.69 (m, 8H), 1.57 – 1.45 (m, 16H); FAB-MS m/z: calcd for $C_{84}H_{88}N_2O_{20}$ 1444.59, found: 1446 [M+H]+; UV-Vis (CH_2Cl_2 , nm) 269 nm, 365 nm.

2-formyl-1,4-phenylene bis(4-((8-(acryloyloxy)octyl)oxy)benzoate) (3)

To a solution of 4-((8-(acryloyloxy)octyl)oxy)benzoic acid (0.86 g, 2.68 mmol) in THF (20 mL) was added triethylamine (1.19 mL, 8.54 mmol), and methanesulfonyl chloride (0.28 mL, 3.66 mmol) at 0 °C. The reaction mixture was stirred for 2 h under a nitrogen atmosphere. To the reaction mixture was added to 2,5-dihydroxybenzaldehyde (0.17 g, 1.22 mmol) in THF (10 mL). The reaction mixture was further stirred for 6 h at 60 °C. The reaction was quenched by water and the mixture was extracted with ethyl acetate. The organic solvent was removed under reduced pressure and the residue was purified by washing with ethanol to give the white solid (0.62 g, 68%). 1 H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.16 (dd, J = 12.3, 8.6 Hz, 4H), 7.79 (d, J = 2.8 Hz, 1H), 7.53 (dd, J = 8.9, 2.8 Hz, 1H), 7.39 (d, J = 8.8 Hz, 1H), 6.99 (t, J = 8.1 Hz, 4H), 6.40 (dd, J = 17.3, 1.9 Hz, 2H), 6.13 (dd, J = 17.3, 10.4 Hz, 2H), 5.82 (dd, J = 10.4, 1.8 Hz, 2H), 4.16 (t, J = 6.8 Hz, 4H), 4.08 – 4.01 (m, 4H), 1.82 (q, J = 7.4 Hz, 4H), 1.68 (q, J = 6.9 Hz, 4H), 1.56 – 1.44 (m, 8H), 1.41 – 1.37 (m, 8H); UV-Vis (CH₂Cl₂, nm) 269 nm.

HRM-N8

To a solution of compound 3 (0.50 g, 0.67 mmol) in ethanol (20 mL) was added p-phenylenediamine (44 mg, 0.40 mmol). The reaction mixture was stirred for 6 h at 60 °C. After that, the reaction mixture was cooled to room temperature, and the resulting solid was filtered. The crude mixture was washed with ethanol to give a yellow solid (0.30 g, 57%). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.60 (s, 2H), 8.15 (dd, J = 8.8, 2.4 Hz, 8H), 8.05 (d, J = 2.8 Hz, 2H), 7.39 (dd, J = 8.8, 2.8 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H), 7.12 (s, 4H), 7.00 (dd, J = 9.0, 2.6 Hz, 8H), 6.35 (ddd, J = 17.3, 3.1, 1.6 Hz, 4H), 6.11 (ddd, J =

17.3, 10.4, 3.2 Hz, 4H), 5.80 (ddd, J = 10.4, 3.6, 1.8 Hz, 4H), 4.13 (td, J = 6.7, 3.1 Hz, 8H), 4.06 (q, J = 5.9 Hz, 8H), 1.82 (t, J = 8.0 Hz, 8H), 1.67 (m, 8H), 1.52 – 1.36 (m, 32H); FAB-MS m/z: calcd for $C_{92}H_{104}N_2O_{20}$ 1556.72, found: 1558 [M+H]⁺; UV-Vis (CH₂Cl₂, nm) 269 nm, 365 nm.

2-formyl-1,4-phenylene bis(4-((9-(acryloyloxy)nonyl)oxy)benzoate) (4)

To a solution of 4-((9-(acryloyloxy)nonyl)oxy)benzoic acid (2.0 g, 5.98 mmol) in THF (20 mL) was added triethylamine (2.65 mL, 19.03 mmol), and methanesulfonyl chloride (0.63 mL, 8.15 mmol) at 0 °C. The reaction mixture was stirred for 3 h under a nitrogen atmosphere. To the reaction mixture was added to 2,5-dihydroxybenzaldehyde (0.38 g, 2.72 mmol) in THF (10 mL). The reaction mixture was further stirred for 12 h at 25 °C. The reaction was quenched by water and the mixture was extracted with ethyl acetate. The organic solvent was removed under reduced pressure and the residue was purified by washing with ethanol to give the white solid (0.46 g, 80%). 1 H NMR (400 MHz, CDCl₃) 3 0 10.22 (s, 1H), 8.16 (dd, 3 1 = 12.3, 8.6 Hz, 4H), 7.79 (d, 3 2 = 2.8 Hz, 1H), 7.53 (dd, 3 3 = 8.9, 2.8 Hz, 1H), 7.39 (d, 3 4 = 8.8 Hz, 1H), 6.99 (t, 3 5 = 8.1 Hz, 4H), 6.40 (dd, 3 5 = 17.3, 1.9 Hz, 2H), 6.13 (dd, 3 5 = 17.3, 10.4 Hz, 2H), 5.81 (dd, 3 5 = 10.4, 1.8 Hz, 2H), 4.16 (t, 3 6 = 6.8 Hz, 4H), 4.06 (m, 4H), 1.83 (m, 4H), 1.68 (m, 4H), 1.56 – 1.44 (m, 4H), 1.36 (m, 16H); UV-Vis (CH₂Cl₂, nm) 269 nm.

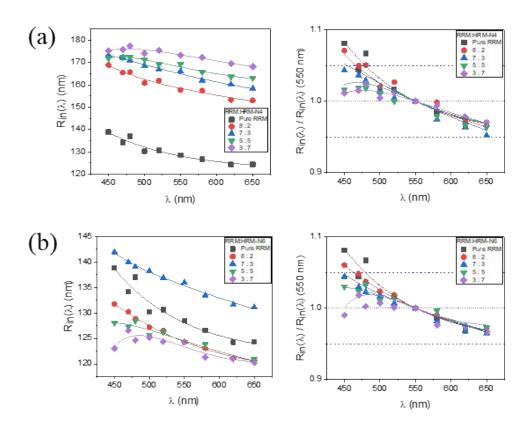
HRM-N9

To a solution of compound 4 (0.50 g, 0.65 mmol) in ethanol (20 mL) was added p-phenylenediamine (42 mg, 0.39 mmol). The reaction mixture was stirred for 6 h at 60 °C. After that, the reaction mixture was cooled to room temperature, and the resulting solid was filtered. The crude mixture was washed with ethanol to give a yellow solid (0.21 g, 40%). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.61 (s, 2H), 8.16 (dd, J = 8.8, 2.4 Hz, 8H), 8.05 (d, J = 2.8 Hz, 2H), 7.39 (dd, J = 8.8, 2.8 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H), 7.13 (s, 4H), 7.00 (dd, J = 9.0, 2.6 Hz, 8H), 6.35 (ddd, J = 17.3, 3.1, 1.6 Hz, 4H), 6.11 (ddd, J = 17.3, 10.4, 3.2 Hz, 4H), 5.80 (ddd, J = 10.4, 3.6, 1.8 Hz, 4H), 4.13 (m, 8H), 4.06 (m, 8H), 1.82 (m, 8H), 1.67 (m, 8H), 1.48 – 1.36 (m, 40H); FAB-MS m/z: calcd for C₉₆H₁₁₂N₂O₂₀ 1612.78, found: 1613

[M+H]⁺; UV-Vis (CH₂Cl₂, nm) 269 nm, 365 nm.

2-formyl-1,4-phenylene bis(4-((10-(acryloyloxy)decyl)oxy)benzoate) (5)

To a solution of 4-((10-(acryloyloxy)decyl)oxy)benzoic acid (0.55 g, 1.59 mmol) in THF (20 mL) was added triethylamine (0.7 mL, 5.07 mmol), and methanesulfonyl chloride (0.17 mL, 2.17 mmol) at 0 °C. The reaction mixture was stirred for 3 h under a nitrogen atmosphere. To the reaction mixture was added to 2,5-dihydroxybenzaldehyde (0.10 g, 0.72 mmol) in THF (5 mL). The reaction mixture was further stirred for 18 h at 60 °C. The reaction was quenched by water and the mixture was extracted with ethyl acetate. The organic solvent was removed under reduced pressure and the residue was purified by washing with ethanol to give the white solid (0.45 g, 78%). 1 H NMR (400 MHz, CDCl₃) δ 10.24 (s, 1H), 8.18 (dd, J = 12.4, 8.5 Hz, 4H), 7.81 (d, J = 2.8 Hz, 1H), 7.56 (dd, J = 9.0, 2.8 Hz, 1H), 7.41 (d, J = 8.9 Hz, 1H), 7.02 (t, J = 8.1 Hz, 4H), 6.43 (d, J = 17.4 Hz, 2H), 6.15 (dd, J = 17.3, 10.4 Hz, 2H), 5.84 (d, J = 10.4 Hz, 2H), 4.18 (t, J = 6.8 Hz, 4H), 4.12 – 4.01 (m, 4H), 1.89 – 1.82 (m, 4H), 1.74 – 1.65 (m, 4H), 1.51 (t, J = 7.6 Hz, 4H), 1.43 – 1.30 (m, 20H); UV-Vis (CH₂Cl₂, nm) 269 nm.


HRM-N₁₀

To a solution of compound **5** (0.2 g, 0.25 mmol) in ethanol (15 mL) was added p-phenylenediamine (16 mg, 0.15 mmol). The reaction mixture was stirred for 5 h at 60 °C. After that, the reaction mixture was cooled to room temperature, and the resulting solid was filtered. The crude mixture was washed with ethanol to give a yellow solid (0.15 g, 72%). ¹H NMR (500 MHz, CD₂Cl₂) δ 8.60 (s, 2H), 8.17 – 8.13 (m, 8H), 8.05 (d, J = 2.9 Hz, 2H), 7.39 (dd, J = 8.8, 2.9 Hz, 2H), 7.32 (d, J = 8.7 Hz, 2H), 7.12 (d, J = 2.5 Hz, 4H), 7.02 – 6.98 (m, 8H), 6.35 (ddd, J = 17.4, 3.2, 1.6 Hz, 4H), 6.11 (ddd, J = 17.3, 10.4, 3.5 Hz, 4H), 5.80 (ddd, J = 10.4, 3.7, 1.6 Hz, 4H), 4.12 (td, J = 6.7, 3.9 Hz, 8H), 4.06 (q, J = 6.4 Hz, 8H), 1.82 (ddt, J = 10.1, 6.5, 3.3 Hz, 8H), 1.69 – 1.62 (m, 8H), 1.50 – 1.44 (m, 8H), 1.39 – 1.30 (m, 40H); FAB-MS m/z: calcd for C₁₀₀H₁₂₀N₂O₂₀ 1668.84, found: 1670 [M+H]⁺; UV-Vis (CH₂Cl₂, nm) 269 nm, 365 nm.

2. Retardation and optical property of the retarders and the HRM molecules

Table S1. Birefringence of the retarders made from pure RRM and RRM-HRM mixtures.

Alkyl chain length	Name	Thickness (μm)	Δn		
-	RRM	1.03	0.125		
4	HRM-N4	1.04	0.163		
6	HRM-N6	1.05	0.118		
8	HRM-N8	1.07	0.103		
9	HRM-N9	1.05	0.115		
10	HRM-N10	1.06	0.127		
11	HRM-N11	1.05	0.093		

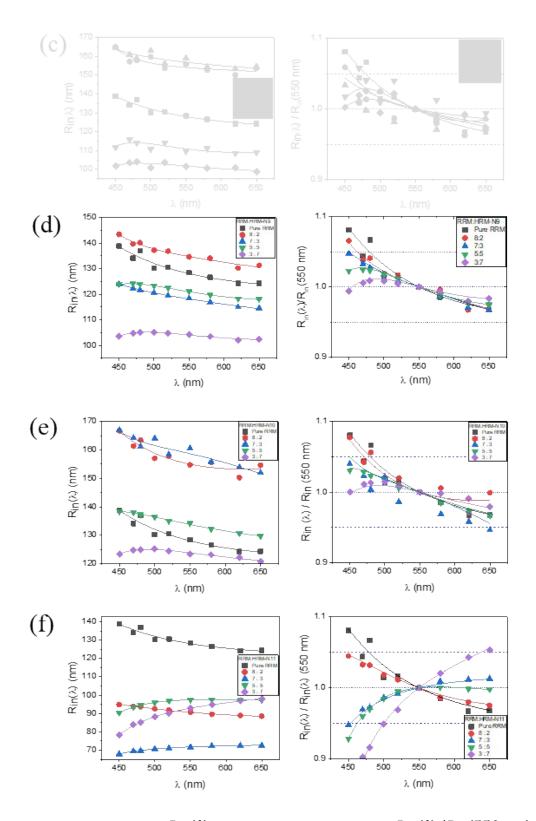


Fig. S2. In-plane retardation $R_{in}(\lambda)$ and normalized retardation $R_{in}(\lambda)/R_{in}(550 \text{ nm})$ of the retarder made from pure RRM and RRM-HRM mixtures. HRM molecules of (a) N=4, (b) N=6, (c) N=8, (d) N=9 (e) N=10, and (f) N=11 were mixed with RRM.

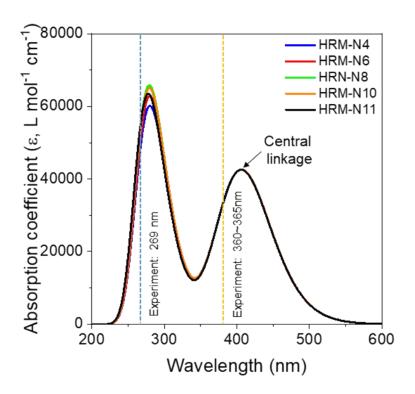
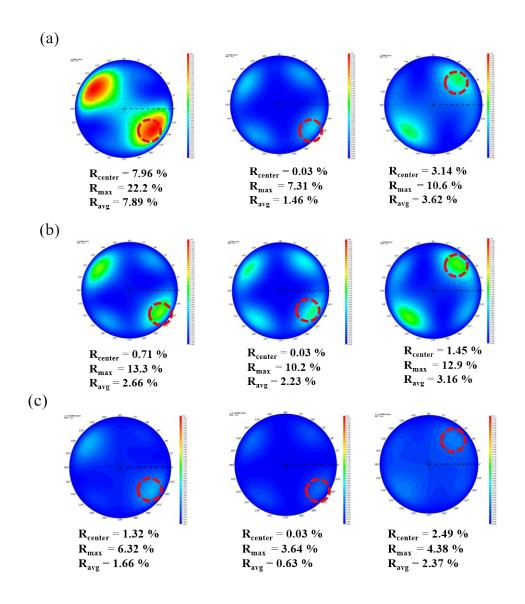


Fig. S3. Theoretically calculated UV-Vis absorption coefficient of the HRM molecules for comparing experimental data.


Table S2. The percentage errors (%) between calculated and experimental values of UV-Vis. absorption intensity.

Alkyl chain length	Name	Calculation data		Experiment data		Error (%)	
	Name	1 st peak	2 nd peak	1 st peak	2 nd peak	1 st peak	2 nd peak
4	HRM-N4	279.6	405.6	269	360	3.94	12.67
6	HRM-N6	279.6	405.6	269	365	3.94	11.12
8	HRM-N8	279.6	405.6	269	365	3.94	11.12
10	HRM-N10	279.6	405.6	269	365	3.94	11.12
11	HRM-N11	277.2	405.6	269	364	3.05	11.43

3. Detailed simulation results of application demonstration

Table S3. Simulation parameters of each layer which were used for the optical simulations.

Material	n _x -n _y		n _x -n _z			n _y -n _z			Thickness	
	$\lambda = 450 nm$	$\lambda = 550 nm$	$\lambda = 650 nm$	$\lambda = 450 nm$	$\lambda = 550 nm$	$\lambda = 650 nm$	$\lambda = 450 nm$	$\lambda = 550 nm$	$\lambda = 650 nm$	(μm)
RRM	0.135	0.125	0.119	0.144	0.134	0.127	0.009	0.009	0.008	1.1
WRS	0.003	0.003	0.003	0.003	0.003	0.004	0.000	0.001	0.001	46.5
HRM-N11	0.086	0.093	0.092	0.072	0.078	0.077	-0.014	-0.015	-0.015	1.48
IPS LC	0.122	0.100	0.095	0.122	0.100	0.095	0.000	0.000	0.000	2.75
HRM-N4	0.165	0.163	0.156	0.109	0.108	0.103	-0.056	-0.055	-0.053	1.69

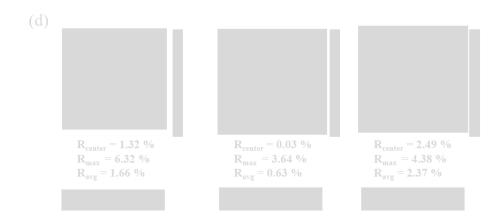


Fig. S4. Optical simulation results of the reflectance from the metal layer of the OLED display where the circular polarizer is attached. (a) Pure RRM, (b) WRS, (c) 50 wt% HRM-N11 and (d) 50 wt% HRM-N4 were used as a quarter waveplate. The red dotted circle corresponds to the viewing angle with the R_{max} value.

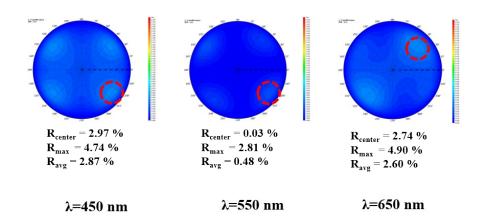


Fig. S5. Optical simulation results of the reflectance from the metal layer of the OLED display where the circular polarizer is attached. 90 wt% HRM-N6 was used as a quarter waveplate. The red dotted circle corresponds to the viewing angle with the R_{max} value. $\alpha_{90-HRM-N6}$, $\beta_{90-HRM-N6}$ and NZ_{90-HRM-N6} were 0.97, 0.98 and 0.69, respectively.