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1. General procedures and experimental details.

All commercially available chemicals were used without further purification unless otherwise noted.
All air and water sensitive reactions were performed under N, atmosphere. 'H and '3C NMR spectra of
small molecules and oligomers were recorded on Bruker-400 MHz (AVANCE I1I), Bruker-500 MHz
(AVANCE III) and Bruker-600 MHz. All chemical shifts were reported in parts per million (ppm).
Molecular weight of all polymers was determined by gel permeation chromatography (GPC) performed
on Polymer Laboratories PL-GPC220 at 150 °C using 1,2,4-tricholorobenzene (TCB) as eluent.
Differential scanning calorimetry (DSC) analyses were performed on a METTLER TOLEDO
Instrument DSC822 calorimeter. Absorption spectra were recorded on PerkinElmer Lambda 750 UV-
vis spectrometer. Varied-temperature absorption spectra were recorded on Shimadzu UV3600Plus
spectrometer. Atomic force microscopies (AFM) were performed with Cypher S microscope (Asylum
Research, Oxford Instruments) at tapping mode under ambient conditions using silicon cantilever
(AC240TS-R3) with a resonant frequency around 70 kHz. Grazing incidence wide-angle X-ray
scattering (GIWAXS) and wide-angle X-ray scattering (WAXS) were performed in vacuum on a
Ganesha SAXSLAB instrument using the Cu Ka irradiation (wavelength of 1.54 A) with thin-film and

powder, respectively. The critical angle o, is given by

a. =1 |—

g (M

Where 7, is the Thomson scattering length of the electron (=2.817 x 105 A-') and p is the electron
density of the materials. For conjugated polymers p = 0.4 A-3 and hence critical angle of conjugated

polymers is ~0.17°.! The angle of incidence for GIWAXS is 0.20°.

Thin films devices fabrications and characterization.

BG/TC FET devices were fabricated using n**-Si/SiO, (300 nm) substrates. The substrates were
subjected to cleaning using ultrasonication in acetone, detergent, deionized water, and isopropyl
alcohol. The cleaned substrates were dried over a nitrogen airflow. All the above processes were
performed under ambient conditions. The substrates were modified with octadecyltrimethoxysilane
(OTS) to form a SAM monolayer. Thin films of the oligomers and polymer were deposited on the
treated substrates by spin coating using a solution (10 mg/mL for oligomers #IID, n=3, 4, and 5 mg/mL
for oligomers #nIID, n = 6 and 8§ and polymer PIID), optionally followed by thermal annealing at 120 °C
for 31ID-318 and 41ID-318, 180 °C for other oligomers #IID and polymers PIIDs under nitrogen. After
polymer thin film deposition, 40 nm thick gold were deposited as source and drain contacts using a
shadow mask. The organic field effect transistors (OFET devices) had a channel length (L) of 1200 pm
and a channel width (W) of 30 um. The evaluations of the FETs were carried out under ambient
conditions (22 °C, Ry = 0-60%) on a probe stage using a Keithley 4200 SCS as parameter analyzer. The

carrier mobility (i) was calculated from the data in the saturated regime according to the equation /sp
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= (W/2L)Cu(Vs-V1)?, where Igp is the drain current in the saturated regime. C; (C; = 11 nF cm™2) is the
capacitance per unit area of the gate dielectric layer, and V' and Vr are the gate voltage and threshold
voltages. V-V of the device was determined from the relationship between the square root of /sp and

Vs at the saturated regime.

Molecular modelling.

The molecular geometry of oligomers was optimized at the B3LYP/6-31g(d) level of theory.>3 The
optimized oligomers molecules were used to construct the initial crystal structure with periodic
boundary conditions. Alkyl chains were carefully set with fully extended. The cell parameters were
initialized according to WAXS data. The crystal structure was optimized with COMPASSIII force
field.* The relaxed structure was subjected to a quenched dynamics simulation (NPT, 1000 ps, P =1 x
10° Pa, T = 300 K, quench frequency = 10 ps).> The unit cell was used to construct the supercell to
simulate the crystalline phase. 3 x 3 x 3 supercell of oligomers (n = 3 and 4), 3 x 3 x 2 supercell of
oligomers (n = 6 and 8) and 3 % 3 x 12 supercell of polymers were constructed. Two consecutive
molecular dynamics calculations have been performed on each supercell: (i) the first one for
thermalization (NPT, P =1 x 10° Pa, 7= 298 K, 200 ps); (ii) and then for data analysis (NPT, P =1 X
103 pa, =298 K, 200 ps, snapshots saved every 1 ps). All molecular simulations were performed with
Materials Studio package. COMPASSIII force field, Velocity Scale themostat, Pamnello barostat. The
following protocol is to simulate an amorphous phase of polymer: (i) 24 dodecamer have been put
randomly in a large unit cell and keep the density of about 0.02 g/cm3. 200 ps molecular dynamics
(NVT, T= 1000 K) have been run to obtain random distribution of the polymers; 4 successive 200 ps
molecular dynamics (NPT, P =1 x 103 Pa) were then performed at decreasing temperature (1000, 500,
350 and 298 K, respectively); A 200 ps molecular dynamics (NPT, P =1 x 103 Pa, T = 298 K) was
performed and snapshots saved every 1ps for further analysis.® The simulation of GIWAXS pattern was

performed with the polymer crystal structure using SimDiffraction codes.”
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2. Synthesis and characterization
All commercially available chemicals were used without further purification unless otherwise noted.

The monomers, IID-310 and I1ID-318, were synthesized following our reported procedures.®?
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Scheme S1. Synthetic approach to #nIID-310s, nIID-318s and polymer PIID-318.

21ID-310 and 3IID-310. To a Schlenk tube IID-310 (500 mg, 0.45 mmol), 2,5-
bis(trimethylstannyl)thiophene (31.96 mg, 0.065mmol), Pd,(dba); (2.34 mg, 4 mol%), P(o-tol); (3.12
mg, 16 mol%), and toluene (60 mL) were added. After freeze-pump-thaw cycles, the mixture was stirred
at 100 °C for 24 h. The mixture was allowed to room temperature. After the solvent was removed under
reduced pressure, the residue was purified by column chromatography on silica gel with eluent
(PE:DCM = 4:1) to give 2IID-310 (96 mg, yield 58%) as purple solids and 31ID-310 (43 mg, yield
26%) as blue solids.

2IID-310: "H NMR (400 MHz, C,D,Cl,, ppm): § 9.21-9.19 (d, J = 8.4 Hz, 2H), 9.10-9.08 (d, J = 8.6
Hz, 2H), 7.40-7.39 (d, J = 3.9 Hz, 2H), 7.26-7.24 (m, 4H), 7.15-7.12 (dd, J = 7.3, 1.8Hz, 2H), 6.95 (m,
4H), 3.81-3.77 (m, 4H), 3.73-3.70 (m, 4H), 1.73-1.66 (m, 8H), 1.38-1.22 (m,156H), 0.88-0.83 (m, 24H).
13C NMR (101 MHz, C,D,Cl,, ppm): 167.0, 166.7, 144.6, 144.5, 142.0, 136.9, 136.6, 132.0, 130.3,
130.0, 130.0, 129.7, 129.7, 129.7, 125.3, 124.0, 120.1, 120.0, 118.1, 110.3, 103.4, 39.7, 36.2, 36.1, 32.6,
31.0, 30.0, 29.3, 29.3, 28.9, 28.9, 28.8, 28.5, 25.8, 23.6, 21.8, 13.4. MALDI-HRMS calcd. for
Ci36Ha13BrN,04S, ([M + HY): 2188.4390; Found: 2188.4345.
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3IID-310: '"H NMR (500 MHz, C,D,Cly, 90 °C, ppm): & 9.30-9.28 (m, 4H), 9.17-9.15 (d, J = 8.4 Hz,
2H), 7.43-7.42 (m, 4H), 7.36-7.34 (m, 4H), 7.31-7.30 (m, 4H), 6.24-7.22 (dd, J=8.7, 1.8 Hz, 2H), 7.04-
7.03 (m, 4H), 6.99-6.98 (d, J = 1.8 Hz, 2H), 3.90-3.86 (m, 8H), 3.73-3.70 (t,J = 7.0 Hz, 4H), 1.86-1.75
(m, 12H), 1.48-1.31 (m, 234H) 0.95-0.91 (m, 36H). 3C NMR (101 MHz, CDCl;, ppm): & 168.0, 167.9,
167.6, 162.5, 153.8, 149.3, 145.3, 145.2, 144.8, 142.9, 142.5, 137.9, 137.4, 137.1, 136.4, 132.6, 131.0,
130.7, 125.9, 124.6, 121.1, 120.8, 120.6, 110.9, 103.9, 103.5, 97.1, 37.2, 33.6, 32.0, 31.0, 30.3, 30.2,
29.8, 29.8, 29.7, 29.4, 26.7, 22.7, 14.2. MALDI-HRMS calcd. for CygH3,;Bry;NgOsSs ([M + HJ):
3285.2242; Found: 3285.2244.

41ID-310 and 6IID-310. To a Schlenk tube 2IID-310 (142 mg, 0.064 mmol), 2,5-
bis(trimethylstannyl)thiophene (7.98 mg, 0.016 mmol), Pd,(dba); (0.60 mg, 4 mol%), P(o-tol); (0.79
mg, 16 mol%), and toluene (30 mL) were added. After freeze-pump-thaw cycles, the mixture was stirred
at 100 °C for 24 h. The mixture was allowed to room temperature. After the solvent was removed under
reduced pressure, the residue was purified by column chromatography on silica gel with eluent (PE:CF

=2:1) to give 41ID-310 (22 mg, yield 32%) as black solids and 61ID-310 (13 mg, 12%) as black solids.

4IID-310: '"H NMR (500 MHz, C,D,Cly, 90 °C, ppm): & 9.24-9.23 (m, 6H), 9.13-9.11 (d, J = 8.6 Hz,
2H), 7.37-7.36 (m, 6H), 7.30-7.27 (m, 6H), 7.24-7.23 (m, 6H), 7.19-7.18 (dd, J = 8.6, 1.6 Hz, 2H), 6.96
(m, 6H), 6.94 (d, J = 1.6Hz, 2H), 3.87-3.74 (m, 16H), 1.82-1.74 (m, 16H), 1.43-1.29 (m, 312H), 0.93-
0.89 (m, 48H). *C NMR (126 Hz, C,D,Cly, 90 °C, ppm): & 168.0, 167.5, 145.8, 145.3, 143.1, 142.8,
138.3, 137.6, 137.0, 133.6, 132.9, 131.7, 131.5, 131.1, 131.0, 130.5, 129.9, 128.9, 126.0, 125.0, 124.6,
123.2,121.5,120.7, 120.3, 119.2, 118.8, 112.1, 111.0, 104.1, 103.9, 40.5, 37.8, 34.2, 31.7, 31.2, 30.0,
29.5,29.1,26.7,24.7,22.4, 13.8. MALDI-HRMS calcd. for C,50H420Br,NgOsSe ([M + H]*): 4382.0094;
Found: 4381.9937.

61ID-310: '"H NMR (500 MHz, C,D,Cly, 90 °C, ppm): & 9.24-9.09 (m, 12H), 7.40-6.84 (m, 44H), 3.86-
3.77 (m, 24H), 1.81-1.75, 24H), 1.31 (m, 468H), 0.93-0.91 (m, 72H). Because of the strong
intermolecular interaction, it is difficult to obtain the '3C NMR with high resolution. MALDI-HRMS
calcd. for Cyp4HessB1raN1201:S10 ([M + HJY): 6575.5798; Found: 6575.5775.

81ID-310: To a Schlenk tube 41ID-310 (200 mg, 0.046mmol), 2,5-bis(trimethylstannyl)thiophene (3.74
mg, 0.007 mmol), Pd,(dba); (0.26 mg, 4 mol%), P(o-tol); (0.34 mg, 16 mol%), and toluene (20 mL)
were added. After freeze-pump-thaw cycles, the mixture was stirred at 100 °C for 24 h. The mixture
was allowed to room temperature. After the solvent was removed under reduced pressure, the residue
was purified by preparative GPC with CHCIl; as the eluent to give 8IID-310 as black solids (36 mg,
yield 54%). '"H NMR (500 MHz, C,D,Cl,, 90 °C, ppm): ¢ 9.13-9.10 (m, 16H), 7.21-6.71 (m, 60H),
3.83-3.73 (m, 32H), 1.82-1.73 (m, 32H), 1.50-1.31 (m, 624H), 0.94-0.90 (m, 98H). MALDI-HRMS

calcd. for C568H861Br2N16016Sl4 ([M + H]+)Z 87691503, Found: 8769.1871.
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PIID-310: To a Schlenk tube IID-318 (80 mg, 0.073 mmol), 2,5-bis(trimethylstannyl)thiophene (36
mg, 0.073 mmol), Pd,(dba); (2.67 mg, 4 mol%), P(o-tol); (3.68 mg, 16 mol%), and toluene (10 mL)
were added. After where freeze-pump-thaw cycles, the mixture was stirred at 110 °C for 30 min. N,N’-
Diethylphenylazothioformamide (20 mg) was then added and then the mixture was stirred for 30 min
to remove any residual catalyst before being precipitated into methanol (250 mL). The precipitate was
filtered through a nylon filter and purified via Soxhlet extraction for 4 h with acetone, 4 h with hexane,
24 h with chloroform, and finally was collected with chlorobenzene. The chlorobenzene solution was
then concentrated by evaporation and precipitated into methanol (200 mL) and filtered off as blue dark

solids (76 mg, yield 92%).

21ID-318 and 3I1ID-318. To a Schlenk tube IID-318 (600 mg, 0.39 mmol), 2,5-
bis(trimethylstannyl)thiophene (47.9 mg, 0.065mmol), Pd,(dba); (3.56 mg, 4 mol%), P(o-tol); (4.74
mg, 16 mol%), and toluene (60 mL) were added. After freeze-pump-thaw cycles, the mixture was stirred
at 100 °C for 24 h. The mixture was allowed to room temperature. After the solvent was removed under
reduced pressure, the residue was purified by column chromatography on silica gel with eluent
(PE:DCM = 4:1) to give 2IID-318 (64 mg, yield 32%) as purple solids and 3IID-318 (76 mg, yield
17%) as blue solids.

2IID-318: "H NMR (400 MHz, C,D,Cl,, ppm): 6 9.17-9.16 (d, J = 8.4 Hz, 2H), 9.05-9.03 (d, J = 8.6
Hz, 2H), 7.36-7.35 (d, J = 3.9 Hz, 2H), 7.28-7.19 (m, 4H), 7.16-7.14 (d, J = 8.7 Hz, 2H), 6.90 (m, 4H),
3.78-3.72 (m, 8H), 1.82-1.52 (m, 8H), 1.23 (m, 284H), 0.97-0.76 (m, 24H). 3C NMR (151 MHz,
C,D,Cly, ppm): 6 167.8, 167.5, 145.4, 145.3, 142.8, 137.7, 137.4, 132.8, 131.1, 130.8, 130.5, 126.1,
125.4, 125.1, 124.8, 120.9, 120.5, 118.9, 111.0, 104.2, 74.1, 74.0, 73.8, 73.6, 40.4, 40.3, 37.0, 36.9,
33.4,31.9, 30.7, 30.6, 30.1, 30.06, 29.69, 29.67, 29.61, 29.3, 26.62, 26.59, 24.4, 22.7, 14.2. MALDI-
HRMS caled. for CagoHsy Br,N4O,S, ([M + H]): 3085.4406; Found: 3085.4378.

3IID-318: 'H NMR (400 MHz, C,D,Cl,, ppm): 6 9.05-9.04 (m, 4H), 8.98-8.96 (d, J = 4.8 Hz, 2H),
7.23-7.21 (m, 4H), 7.09-7.04 (m, 10H), 6.78-6.70 (m, 6H), 3.72-3.66 (m, 12H), 1.67-1.62 (m, 12H),
1.35-1.18 (m, 426H), 0.85-0.81 (m, 36H). 3*C NMR (151 MHz, C,D,Cl,, ppm): 6 167.7, 167.4, 145.2,
142.8,142.5,137.8,137.4, 137.2,136. 6, 131.3, 131.2, 130.1, 125.9, 124.8, 121.0, 120.7, 120.4, 118 .4,
110.9, 103.8, 103.3, 74.1, 74.0, 73.8, 73.6, 40.3, 37.0, 36.98, 36.95, 33.47, 33.43, 31.9, 30.8, 30.16,
30.13, 30.09, 29.74, 29.68, 29.62, 29.3, 26.7, 26.63, 26.60, 24.4, 22.7, 14.16, 14.15. MALDI-HRMS
calcd. for Cs04Hs513Br;NgOS4 ([M + H]): 4630.7266; Found: 4630.7124.

4IID-318 and 6IID-318. To a Schlenk tube 2IID-318 (292 mg, 0.095 mmol), 2,5-
bis(trimethylstannyl)thiophene (9.32 mg, 0.019 mmol), Pd,(dba); (0.70 mg, 4 mol%), P(o-tol); (0.93
mg, 16 mol%), and toluene (30 mL) were added. After freeze-pump-thaw cycles, the mixture was stirred
at 100 °C for 24 h. The mixture was allowed to room temperature. After the solvent was removed under

reduced pressure, the residue was purified by column chromatography on silica gel with eluent (PE:CF
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= 2:1) to give 41ID-318 (46 mg, yield 39%) as black solids and 61ID-318 (17 mg, 10%) as black solids.

4IID-318: "H NMR (500 MHz, C,D,Cly, 90 °C, ppm): ¢ 9.30-9.29 (m, 6H), 9.16-9.14 (d, J = 6.5 Hz,
2H), 7.41-7.40 (m, 6H), 7.35-7.32 (m, 6H), 7.29-7.28 (m, 6H), 7.22-7.20 (dd, J=8.5, 1.8 Hz, 2H), 7.02-
7.01 (m, 6H), 6.97 (d, J= 1.2 Hz, 2H), 3.89-3.84 (m, 12H) 3.79-3.16 (t, /= 6.5 Hz, 4H), 1.83-1.49 (m,
16H) 1.44-1.30 (m, 568H), 0.94-0.90 (m, 48H). 3C NMR (151 MHz, CDCl;, ppm): ¢ 168.0, 168.0,
167.7,167.4, 145.3, 145.2, 144.8, 142.9, 142.7, 142.5, 137.9, 137.6, 137.4, 137.2, 136.3, 132.6, 131.0,
130.7, 125.9, 124.6, 121.2, 120.8, 120.7, 118.3, 118.0, 110.9, 103.6, 77.3, 77.1, 76.9, 40.5, 37.3, 37.3,
37.2,33.7, 33.6, 32.0, 31.2, 31.1, 30.3, 30.3, 30.3, 29.9, 29.9, 29.8, 29.8, 29.8, 29.4, 28.4, 27.1, 26.8,
26.8, 24.9, 24.8, 22.8, 14.2. MALDI-HRMS calcd. for CygHggsBraNgOsSs ([M + H]Y): 6176.0126;
Found: 6175.9826.

61ID-318: '"H NMR (500 MHz, C,D,Cly, 90 °C, ppm): § 9.27-9.22 (m, 10H), 9.15-9.13 (d, J = 6.4 Hz,
2H), 7.38-7.17 (m, 32H), 6.97-6.90 (m, 12H), 3.86-3.77 (m, 24H), 1.83-1.74 (m, 24H), 1.48-1.31 (m,
852H), 0.94-0.88 (m, 72H). Because of the strong intermolecular interaction, it is difficult to obtain the
BC NMR with high resolution. MALDI-HRMS calcd. for Cg;6H 020BrN1,01S0 (M + HJY):
9265.5847; Found: 9266.5119.

81ID-318: To a Schlenk tube 41ID-318 (400 mg, 0.065 mmol), 2,5-bis(trimethylstannyl)thiophene (5.32
mg, 0.011 mmol), Pd,(dba); (0.39 mg, 4 mol%), P(o-tol); (0.53 mg, 16 mol%), and toluene (40 mL)
were added. After freeze-pump-thaw cycles, the mixture was stirred at 100 °C for 24 h. The mixture
was allowed to room temperature. After the solvent was removed under reduced pressure, the residue
was purified by preparative GPC with CHCI3 as the eluent to give 8IID-318 as black solids (61 mg,
yield 46%). '"H NMR (500 MHz, C,D,Cl,, 90 °C, ppm): ¢ 9.16-9.13 (m, 16H), 7.26-6.77 (m, 60H),
3.81-3.72 (m, 32H), 1.79-1.70 (m, 32H), 1.45-1.27 (m, 1336H), 0.90-0.87 (m, 96H). MALDI-MS calcd.
for CgpaH137:B1oN16016S14 ([M + H*]): 12369.79; Found: 12370.09.

PIID-318: To a Schlenk tube IID-318 (100 mg, 0.064 mmol), 2,5-bis(trimethylstannyl)thiophene
(31.90 mg, 0.064 mmol), Pd,(dba); (2.37 mg, 4 mol%), P(o-tol); (3.15 mg, 16 mol%), and toluene (10
mL) were added. After where freeze-pump-thaw cycles, the mixture was stirred at 110 °C for 1 h. N,NV’-
Diethylphenylazothioformamide (20 mg) was then added and then the mixture was stirred for 30 min
to remove any residual catalyst before being precipitated into methanol (250 mL). The precipitate was
filtered through a nylon filter and purified via Soxhlet extraction for 4 h with acetone, 4 h with hexane,
24 h with chloroform, and finally was collected with chlorobenzene. The chlorobenzene solution was
then concentrated by evaporation and precipitated into methanol (200 mL) and filtered off as blue dark

solids (40 mg, yield 40%).
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Table S1. The molecular weights of PIID-310 and PIID-318 (1,2,4-tricholorobenzene as eluent at 150

% 1-It

°C).
Polymer M, (Da) M, (Da) Dy
PIID-310 28639 65246 2.28
PIID-318 80570 192746 2.39
(@ . w  (b) :
1.2 = i /\ _,,/
1.1 N\ 9 ;
1 75 0.8 ‘/ \\ 75
. a / /N
02§ os- F g B
0.5 0.4 // \\
ol 0.2- \
014 \\ 0.1+ o \
0 T ITI-VII)I‘II T T TTTTIT T lll\lllll T TTTTI 0 0 [BRRRALLL iT T T [ILLRLRALL I T TTHTI 0
1000 10000 100000 1e6 1e7 1000 10000 10000 1e6 1e7
MW MW

Figure S1. Molecular weights and dispersity of the polymers: (a) PIID-310 and (b) PIID-318. The

molecular weight distributions of two polymers, PIID-310 and PIID-318, were measured by high-

temperature gel permeation chromatography (GPC) at 150 °C.
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Figure S2. Atom occupied volume of side chain and backbone of oligomers calculated from

molecular dynamics simulation: (a) #rIID-310s and (b) nIID-318s.
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Figure S3. UV-vis absorption spectra of oligomers and polymer of nIID-310s and #IID-318s: (a) 0.02

g/L of nIlID-310s oDCB solution at room temperature. (b) 0.02 g/L of nlID-310s oDCB solution at

room temperature. (¢) Thin film of #IID-310s. (d) Thin film of #IID-318s.
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Figure S7. Optical textures observed under POM of 31ID-310 (scale bar, 50 pum).

Figure S8. Optical textures observed under POM of 41ID-310 (scale bar, 50 pm).
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Figure S11. Temperature-dependent (cooling process) powder wide-angle X-ray scattering (WAXS)

of nlID-310s. Upon decreasing the temperature to the crystallization point, 31ID-310 and 41ID-310

showed a weakening of lamellar packing and z—z packing along with an increasing of alkyl chain

packing (brown box).
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Figure S13. Temperature-dependent (cooling process) powder wide-angle X-ray scattering (WAXS)

of nlID-318s. When the temperature was lowered to the crystallization temperature of the alkyl

chains, a significant diffraction signal was observed in the alkyl chain region, along with a decrease in

the half-peak widths of the lamellar packing and 7—= packing diffractions. The packing of alkyl chains

facilitates the stabilization of the backbone packing. However, the backbone 7—= distance increases

due to the mismatch between the alkyl chain packing and the backbone packing (brown box).
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Figure S15. Temperature-dependent UV-vis absorption spectroscopy of thin film of »IID-310s and
nlID-318s. Within the instrumental temperature range, the absorption peaks of 41ID-310 and #IID-
318s (n =3, 4, 6, and 8) remain almost constant below the phase transition temperature of the alkyl

chains over the instrumental temperature range, suggesting that the dihedral angle of the backbone is

fixed by the alkyl chains.
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Figure S16. AFM height images of thin film of nIID-310s and #IID-318s after annealing.
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Figure S17. AFM height images of thin film of #IID-310s and #IID-318s before annealing.

S20



0 159 nm
100
50
2 ' 4 00
ey -50
! ‘ -10.0
4 ' - -150
o . -222
0pm 2 4
9.2 nm 0 Mo in - . T 13.7 nm
R 10310 A
) L b - ‘ 50
0.0 2 . oBT5 00
50 e % : -50
B N -10.0
-10.0 e . d -15.0
-16.7 I P -236
[ Mask
11.3nm - e e 13.5nm 20.1 nm
- - - 100 15.0
: e 2N 50 100
0'0 4 .y “
o | 00 50
-50 A L - 00
-10.0 L DA il -50
¢ -10.0 -100
-150 _15.0 -150
-24.2 -231 -256
20.4nm 2.8nm
15.0 20
10.0
50 o
00 0.0
-50
-10
-10.0
-150
-21.7 -28
[ Mask [ Mask

Figure S18. Mask dark region of nIID-310s and »IID-318s in thin film with threshold by 50% height.
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Figure S20. (a) 2D GIWAXS patterns of nIID-310s after transformation into reciprocal space
acquired at different detector distance of the same film. (b) 2D GIWAXS patterns of #nIID-318s after
transformation into reciprocal space acquired at different detector distance of the same film. The
diffraction peak observed in 31ID-310 and 41ID-310 along the ¢, direction is indexed as (101) based
on a monoclinic lattice model. In this lattice, the (100) and (101) planes have comparable spacings,
and the conjugated backbones are arranged along the diagonal direction of the unit cell. As a result,
the lamellar stacking appears as the (101) reflection along ¢,, while the molecular orientation remains

edge-on.
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Figure S21. 1D GIWAXS plots of #nIID-310s and #IID-318s in thin films. Diffraction intensity was

integrated along the radial direction and plotted against the scattering vector.
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Figure S22. Simulation of 2D GIWAXS of nIID-310s in thin films according to the fitting unit cell

structure.
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Table S2. Fitting unit cell structure of 31ID-310, 41ID-310, 61ID-310, 81ID-310, and PIID-310.

31ID-310 411D-310 61ID-310 81ID-310 PIID-310
Lattice type Monoclinic Monoclinic Triclinic Triclinic system Triclinic system
system system system

a(A) 24.26 25.20 24.61 24.40 24.38
b (A) 3.58 3.52 3.51 3.49 3.52

c(A) 42.23 60.59 110.24 145.00 278.61
a(°) 90.00 90.00 84.01 76.93 78.83
B (°) 73.00 78.79 88.62 86.23 88.47
v (®) 90.00 90.00 89.64 86.00 92.42
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Figure S23. Temperature-dependent UV-vis absorption spectroscopy of nIID-310s and #IID-318s in

oDCB solution.
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Figure S24. Equilibrated snapshots of 31ID-310 and 31ID-318 from molecular dynamics simulations
of the 3 x 3 x 3 supercell. (a) 31ID-310. (b) 31ID-318. (c—¢) Dihedral angle distribution of 31ID-310
and 31ID-s318 analyzed from equilibrated process. (f) side view of 31ID-310 extracted from supercell.
(g) side view of 31ID-318 extracted from supercell.
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Figure S25. Equilibrated snapshots of 41ID-310 and 41ID-318 from molecular dynamics simulations
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(g) side view of 4IID-318 extracted from supercell.

S29



(C) 0.04 finternal angle in I-1
6liD-310
6liD-318

Probability
e o
SR

S
o
=h

-c"IOO 50 0 50 100
Torsion angle (°)

(d) ¢ Dihedral angle of I-T

[ 6lID-310

2008 6IID-318

S 0.06

3

) 0.04

=

o 0.02

0 Pa— i M
100 -50 0 50 100
Torsion angle (°)

e
( ) LS Dihedral angle of T-T
1 61ID-310
QO'OB 6liD-318
g 0.06
g 0.04
E '
o 0.02

e
-100 -50 0 50 100
Torsion angle (°)

Figure S26. Equilibrated snapshots of 61ID-310 and 61ID-318 from molecular dynamics simulations
of the 3 x 3 x 2 supercell. (a) 61ID-310. (b) 61ID-318. (c—¢) Dihedral angle distribution of 6I1ID-310

and 61ID-318 analyzed from equilibrated process. (f) side view of 61ID-310 extracted from supercell.
(g) side view of 611D-318 extracted from supercell.
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'H and 3C NMR spectra of all compounds.
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Figure S35. 3C-NMR spectrum of 21ID-310 in C,D,Cl, (101 MHz).
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Figure S36. '"H-NMR spectrum of 31ID-310 in C,D,Cl, (363K, 500 MHz).
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Figure S41. "H-NMR spectrum of 81ID-310 in C,D,Cl, (363 K, 500 MHz).
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Figure S44. "H-NMR spectrum of 31ID-318 in C,D,Cl, (400 MHz).
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Figure S45. 3C-NMR spectrum of 31ID-318 in C,D,Cl, (151 MHz).
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Figure S47. 3C-NMR spectrum of 41ID-318 in CDCl; (151 MHz).
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