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1 Experimental section
1.1 Materials and characterization

1.1.1 Materials

Hexamethylenetetramine (CsH12N4,99%), zinc nitrate hexahydrate
(Zn(NOs),-6H,0, 99%), Potassium hydroxide (KOH,99%), sulfuric acid (H,S04,99%),
sodium chloride (NaCl,99%), sodium bicarbonate (NaHCO3,99%), potassium chloride
(KC1,99%), magnesium chloride hexahydrate (MgCl,-6H,0,99%), calcium chloride
(CaCl,,99%), fluorine-doped tin dioxide (FTO) glass, FTO needs to be ultrasonically
cleaned with ethylene glycol, acetone, ethanol, and deionized water for 10 min.

1.1.2 Characterization

The Crystal structure and purity of the ZnO were measured by X-ray diffraction
(XRD, RIGAKU Smartlab SE with Cu K« radiation (A = 1.5406 A)). The Crystallinity
and morphology of ZnO were measured by transmission electron microscopy (TEM,
FEI, Tecnai TF20) and scanning electron microscopy (SEM, Thermofisher Apreo 2C).
UV-vis diffuse reflection spectra were obtained by a UV-3600 Shimadzu UV-vis-NIR
absorbance spectrometer.

1.2 Preparation of ZnO inclined nanorod array

0.742 g of Zn(NO;),-6H,0 and 0.35 g of C¢H 2Ny were dissolved in 50 ml of
deionized water and stirred at room temperature for 20 min. 25 ml of precursor solution
was put in a 50 ml polytetrafluoroethylene-lined stainless steel autoclave, and two
pieces of FTO (conductive side down) were placed in the polytetrafluoroethylene-lined
stainless steel autoclave for reaction at 90 °C for 0.5, 1, 3, 5, or 10 h, named as ZnO-
0.5, ZnO-1, ZnO-3, ZnO-5, and ZnO-10, respectively. All ZnO samples were annealed

in air at 600 °C for 30 min.

1.3 Electrochemical measurements
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The test system was a three-electrode system, with the prepared ZnO INRA as the
working electrode, a saturated calomel electrode functioning as the reference electrode,
and a platinum sheet as the counter electrode. 0.1 M KOH, 5x10°¢ M H.SOs, and
simulated seawater are electrolytes, respectively. LED light with different wavelengths
and power densities as the irradiated light sources (see Table S1 of the Supporting
Information for more information), and the light intensities were measured using an
optical power meter (Daheng Optics GCI-08) in air. The PEC tests were conducted in

a dark box to eliminate the influence of environmental lights.
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Exploration of optimal synthesis conditions of ZnO INRA

Using the hydrothermal method, ZnO INRA was successfully synthesized on FTO
with optimized synthesis parameters!. The transformation of the height of ZnO INRA
from nanometers to the micron scale was achieved by controlling the hydrothermal
times. Figure Sla is an SEM image of blank FTO. It can be observed that the surface
of the FTO is not smooth and includes lots of pinnacles, thus providing nucleation sites
for the growth of ZnO INRA without other templates. Figures 1a and S2a-d show SEM
images of ZnO hydrothermal times of 0.5, 1, 3, 5, and 10 h, respectively. ZnO INRA
with different scales and coverage rates is obtained by controlling the hydrothermal
time. Figure 1b and S2e-h show the cross-section SEM images of 0.5, 1, 3, 5, and 10 h,
respectively. It can be seen from Figure S1b that the thickness of the FTO conductive
layer is about 473.8 nm. The height of ZnO INRA increases with the increase in
hydrothermal time (0.92 to 3.53 pm). As show in Figure 1b, Figure S1h, and Figure S3,
when the hydrothermal time is 10 h, the height of ZnO-10 INRA is about 3.53 pm and
diameter is about 0.51 pm, compared with ZnO-5 (the height is about 3.37 um and
diameter is about 0.49 pm), the height and diameter of ZnO-10 nanorods are almost

unchanged.

To investigate the effects of different hydrothermal times on the photoresponse,
the current density-time (J-t) curves were tested with 365 nm light under different
optical power intensities (more details in Table S1), as shown in Figure S4a. The Jph
increases with increasing hydrothermal time (more details in Table S2). When the
hydrothermal time is 5 h, it exhibits the optimal photoresponse (ZnO-5 and ZnO-10
have almost equal J;,). Therefore, 5 h is the optimal synthesis time. Cyclic voltammetry
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(CV) tests were carried out on these samples to further explain the reasons for the
increased photoresponse. The area of the CV curve represents the electrochemically
active surface area (ECSA)?, and the larger the ECSA leads to higher the
photoresponse3. As shown in Figure S4b, with the increase of hydrothermal time, the
ECSA increases, and ZnO-5 and ZnO-10 have similar ECSA. As shown in Figure S4c,
after the hydrothermal reaction time exceeded 0.5 hours, ZnO synthesized at different
times exhibited similar absorption peak, and the peak intensities of ZnO-5 and ZnO-10

were comparable.

473.8 nm

Figure S1. (a) SEM of FTO. (b) SEM cross-section of FTO

Figure S2. Top-view SEM images of ZnO INRA at 0.5, 1, 3, and 10 h hydrothermal times: (a)
Zn0-0.5, (b) ZnO-1, (c) ZnO-3, and (d) ZnO-10. Cross-section SEM images of ZnO INRA at 0.5,
1, 3, and 10 h synthesis times: (¢) ZnO-0.5, (f) ZnO-1, (g) ZnO-3, and (h) ZnO-10.
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Figure S3. (a) The nanorod diameter of ZnO-5. (b) The nanorod diameter of ZnO-10.
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Figure S4. (a) Comparison of J,, at different synthesis times in 0.1 M KOH solution. (b) CV
curves for different synthesis times in 0.1 M KOH solution. (¢) UV-vis DRS for different
synthesis times.

Table S1. The light power intensity for various wavelengths.
P (mW/cm?)

Light (nm) 1 1I 11T v Vv
365 0.089 0.43 0.81 1.23 1.58
455 091

Table S2. The calculated J of various ZnO INRA PEC UV photodetectors illuminated
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by different synthesis conditions at various P in 0.1 M KOH.

I I 11 v \Y%
Samples
0.5 1.1 4.5 10 15.9 21.1
1 6.4 28.5 61.8 95.1 124.7
3 19.3 84.3 142.9 184.1 241.1
5 249 98.4 162.5 238.2 317.6
10 24.4 99.7 154.9 233.7 314.9

Table S3. The calculated R of various ZnO PEC UV photodetectors illuminated by
different synthesis conditions at various P in 0.1 M KOH.
Jph (LA/cm?)

I I I v \Y%
Samples
0.5 12.4 10.5 12.5 13.3 13.2
1 71.9 66.3 77.3 79.3 77.9
3 216.9 196.0 178.6 153.4 150.7
5 279.8 228.8 200.6 182.4 180.9
10 274.2 231.9 193.6 194.8 196.8

Table S4. The calculated D* of various ZnO PEC UV photodetectors illuminated by
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different synthesis conditions at various P in 0.1 M KOH.

D*(10'"! Jones)

I I I v v
Samples
0.5 3.2 2.7 33 3.5 34
1 18.7 17.4 20.1 20.7 20.3
3 56.5 51.0 46.5 39.9 39.2
5 72.8 59.6 52.9 47.5 41.7
10 71.4 60.4 50.4 50.7 513
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Figure S5. Linear sweep voltage (LSV) curve of ZnO-5 PEC UV photodetector under pulsed 365
nm (0.089 mW/cm?) light irradiation.

Table S5. The calculated J;, of ZnO INRA PEC UV photodetectors in different
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solutions and temperatures.

Jon (A/cm?)

KOH Seawater H,SO,
Temperature (°C)
5 244 10.8 6.7
25 24.9 13.6 6.9
45 253 13.7 8.4

Table S6. The calculated R of ZnO INRA PEC UV photodetectors in different solutions
and temperatures.

KOH Seawater H,SO,
Temperature (°C)
5 273.7 121.7 751
25 279.8 152.4 77.4
45 284.4 153.5 94.9

Table S7. The calculated D* of ZnO INRA PEC UV photodetectors in different

solutions and temperatures.

D*(10'"! Jones)

KOH Seawater H,S0O,
Temperature (°C)
5 71.2 31.6 19.5
25 72.8 39.6 20.1
45 73.9 39.9 24.7
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Figure S6. Corresponding R of ZnO INRA PEC UV photodetector irradiated at 365 (level III) and
455 nm (0.91 mW/cm?) in (a) seawater and (b) H,SO, solution.
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Figure S7. Stability measurements of ZnO INRA PEC UV photodetectors in seawater and 5x10-¢

M H,SO, solution.
Table S8. Performance comparison of recently reported PEC UV PDs
Materials Measurement UV/Visibl  Light R Tr/Td (s) Ref.
conditions e (nm)  (MA/W)

ZnO INRA 0.1 M KOH 10030.5 365 279.8 0.005/0.022  This work

ZnO INRA Simulated seawater 8956.7 365 152.4 0.004/0.024  This work

ZnO INRA 5x10° M H,SO, 2191.8 365 77.4 0.02/0.03 This work

In,O; NAs 1 M KOH 1319 254 86.15 0.015/0.018 4

In,0O; MR 0.01 M Na,SO4 20.77 365 21.19 0.5/1.1 5
Diamond single crystal 5 mM H,SO, - 213 20 0.05/0.038 6

In,O; NCF 1 M KOH 13.5 365 44.43 0.02/0.03 7
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Ga—In OAs
ZnAl MMO
AlGaN NWs
In,05 NSs
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ZnAl-LDH
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NAs: nanosheet arrays; MRs: Microrods; NCF: nanocube film; OAs: oxide alloys; MMO: mixed
metal oxide; NWs: nanowires; NSs: nanosheet arrays; NPF: nanoparticle film; SSNWs: single-unit-cell

semiconductor nanowires; NSs: nanosheet arrays.

Figure S8. (a) SEM image of ZnO-5 nanorods after multi-cycle stability. (b) SEM image of ZnO-
5 nanorods after long-term stability.
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Figure S9. XRD patterns of ZnO-5 after two months of storage.
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Figure S10. (a—d) The response curves at transmitting frequencies of 1, 10, 100, and 1000 Hz in 0.1 M
KOH.
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Figure S11. The response curves at a transmitting frequency of 10 Hz in 5x10° M H,SOy.
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