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Materials and methods

Binding constant and limit of detection

The binding constants were determined with Benesi-Hildebrand equation, and the limit of 

detections were calculated with the help of a standardized IUPAC equation.

1 1 1
I − Iₒ 

= 
Kₐ (Imax − Iₒ)[C]ⁿ  

+
Imax − Iₒ

Where,

Io = Intensity of probe in the absence of analyte
I = Intensity of probe at an intermediate analyte concentration 

Imax = Intensity of probe at a saturation

C = Concentration of analyte, 

Ka= Binding constant

The detection limit (DL) was calculated from the following equation:

𝐷𝐿 =  
3 ×  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑙𝑎𝑛𝑘 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑣𝑒 

Quantum Yield 

We have calculated the fluorescence quantum yield of BINNA in the absence and presence of 

Al3+ ions and DCP using fluorescein as a standard, with a quantum yield of 0.54 (0.1M H2SO4) 

and phenanthrene with a quantum yield of 0.13 (cyclohexane). The formula used is as follows 

Φ𝑆 =  Φ𝑅 ×
𝐴𝑆

𝐴𝑅
 ×

(𝐴𝑏𝑠)𝑅

(𝐴𝑏𝑠)𝑆
 ×

𝜂𝑆

𝜂𝑅

Where ΦS
 is the quantum yield of sample to be tested, ΦR is the quantum yield of the 

fluorescein; AS and AR are the emission band areas of tested sample and fluorescein, (Abs)S 

and (Abs)R are the maximum absorbance values of the tested sample and fluorescein; ηS and 

ηR are the refractive index of the solvent used for the sample and fluorescein to record emission 

band.

Sample preparation for DLS studies 

The prepared stock solution was filtered to remove the suspended particles with the help of 

0.02 µM filter. Zeta potential analyser (ZEN 3600) was used for conducting DLS experiment. 

The solution having a concentration of 20 µM was prepared to determine the hydrodynamic 

size of the particles. 
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Field Emission-Scanning Electron Microscopy (FE-SEM) measurement

The effect of aggregation has been explored by measuring the changes in particle size 

and surface morphology using FE-SEM imaging. The BINNA solution was placed on a cover 

slip by drop cast method and allowed to dry for 24 h. The dried sample was subsequently plated 

with gold spray and FE-SEM analysis was performed. ZEISS MERLIN Compact FE-SEM 

was used to perform the experiment.
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Figure S1: Possible conformations of probe BINNA 

Figure S2: 1H NMR spectrum (DMSO-d6) of (E)-6-(2-((2-hydroxynaphthalen-1-
yl)methylene)hydrazinyl)-1H,1'H,3H,3'H-[2,2'-bibenzo[de]isoquinoline]-1,1',3,3'-tetraone

https://www.sciencedirect.com/topics/materials-science/surface-morphology
https://www.sciencedirect.com/topics/chemistry/spraying-apparatus
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/electron-microscopy
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Figure S3: 13C NMR spectrum (DMSO-d6) of (E)-6-(2-((2-hydroxynaphthalen-1-
yl)methylene)hydrazinyl)-1H,1'H,3H,3'H-[2,2'-bibenzo[de]isoquinoline]-1,1',3,3'-tetraone

Figure S4: HRMS spectrum of BINNA
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Efficiency of BINNA

BINNA effectiveness and efficacy in detecting Al3+ ions and DCP were contrasted with those 

of previously published Al3+ and DCP sensors (Table S1). Based on this data, it is evident that 

BINNA offers a number of benefits over the reported sensors, as it can detect both Al3+ and 

DCP, including a "Turn-On" sensor with better detection limits compared to other reported 

chemosensors. 

Table S1: Comparison of the present sensor with known sensors

S. No. Sensor Solvent System Ion 

Detected 

LOD Application Ref

1

N
N

HN
N

HO O H2O Al3+ 0.022 

µM

Flexible and 

foldable film  

1

2

ON N

N

O

H2N C2H5OH:H2O 

(7:3)

Al3+ 0.098 

µM

Test strip and 

Logic gates  

2

3
N
H
N

O
O

OH

O
HEPES buffer Al3+ 0.082 

µM 

Test strip  3

4

N

N

O

H
N

OH

N OO

MeOH Al3+ 0.15 

µM

Test strip and 

logic gates 

4
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5 Br

N
N
H

O

H2N
O

O

DMSO:H2O 

(1:1 v/v) 

Al3+ 15.2 

µM

Cell imaging 5

6

N
N

O

O

OH

DMSO:H2O 

(1:1 v/v)

Al3+ 0.033 

µM

Pharmaceutical 

samples 

6

7
N

N
O

O

O

H
N
N

N MeOH Al3+ 0.79 

µM

Cell imaging and 

smartphone 

7

8

ON
H

N
H

N

O

N

O2N CH3CN:HEPES 

(1:1 v/v)

Al3+ 1.88 

µM

Cell imaging 8

9 

N

N
THF:H2O  

(1:1 v/v)

Al3+ 3.15µM Real Sample 

analysis and 

bioimaging   

9

10 H
N

OH

O

MeOH: HEPES 

(6:4) 

Al3+ 12.6 

µM

 Smartphone and 

test kit 

10

11

N

N
NH2

CHCl3 DCP 23.31 

nM

Test strip and 

Bioimaging 

11

12

N

NN NH2
CH3CN DCP 0.36 

µM

Real Sample 

analysis 

12
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13

O

N

O

N

N N

HO DMSO:H2O

(6:4)

DCP 0.16 

µM

Paper strip, 

smartphone 

analysis 

13

14

N

H
N

CHO

DMSO DCP 7.4 µM Smartphone and 

paper strip 

14

15
N

O

O

NHN

DMF DCP 5.5 nM Paper strip 15

16
N

O

O

HN
NHO

N CH3CN DCP 1.54 

µM

Paper strip 16

17

O

OH N

OCH3

N

O DMSO:H2O 

(1:1)

DCP 0.36 

µM 

Paper strip 17

18
N N

O

N

DMSO DCP 0.42 

µM 

Paper strip and 

Real sample 

analysis 

18

19 

N

N
N

N

CH3CN DCP 0.3 µM Test strip and 

real sample 

analysis 

19

20 

MeO

N
HN

O
O CH3CN:H2O 

(9:1)

DCP 12.2 

nM

Paper Strip 20
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21

N
NO O

OO

HN
N

HO

MeOH Al3+, 

DCP

18.2 

nM 

(0.0182 

µM) 

and 8.5 

nM 

(0.008 

µM) 

Cell Imaging, 

Logic gate, Real 

sample analysis 

This

work

Figure S5: Determination of limit of detection for BINNA towards Al3+ ions.

Figure S6: The relative intensity of BINNA at 450 nm in the presence and absence of Al3+ 

ions (10 µM), while considering various competing metal ions (50 µM). The change in 

emission intensity of BINNA with different metal ions was represented by green bars, 

whereas blue bars represent the changes in emission intensity of BINNA in the presence of 

Al3+ ions and different competing ions
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Figure S7: (a) Calculation of binding constant for BINNA towards DCP using the Benesi-

Hildebrand equation, (b) Determination of limit of detection for BINNA towards DCP ions. 

(c) Job's plot for calculating the stoichiometry of BINNA and DCP using fluorescence spectra.

Figure S8: Relative intensity of BINNA at 371 nm in the presence and absence of DCP (10 

µM) with several anions (50 µM). The fluorescence intensity change of BINNA with different 

anions and nerve agents is represented by orange bars, and yellow bars represent BINNA-

DCP in the presence of different competing ions and nerve agents.
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Figure S9: HRMS spectrum of BINNA in the presence of Al3+ ions 

Figure S10: (a) Absorption and (b) emission spectra of BINNA, BINNA+Al3+ and 3 
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Figure S11: HRMS spectrum of BINNA in the presence of DCP  

Figure S12: Time-resolved spectra of BINNA (CH3OH) in the absence and presence of DCP 

and Al3+ ions.

Table S2: Calculated electronic spectra of BINNA in different solvents 

Absorption 
peak (λ; nm)

Oscillation 
strength (f) 

Dipole moment 
(a.u.)

Solvents Chloroform 392 1.1576 4.52
MeOH 397 1.1692 5.33
DMSO 399 1.1854 5.38
Acetone 393 1.1418 4.96
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Figure S13: Cell viability of E. coli cells incubated with BINNA with different concentration 

(10, 20, 30, 40 and 50 μM) for 24h 

Figure S14: Emission spectra of BINNA solution in different spiked and unspiked DCP soil 

samples such as (a) sand, (b) field, and (c) clay soil. 
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Figure S15: Calibration curve for (a) DCP and (b) Al3+ ions.

Figure S16: Emission spectra of BINNA solution in different Al3+ spiked and unspiked soil 

samples such as (a) sand, (b) field, and (c) clay soil 
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