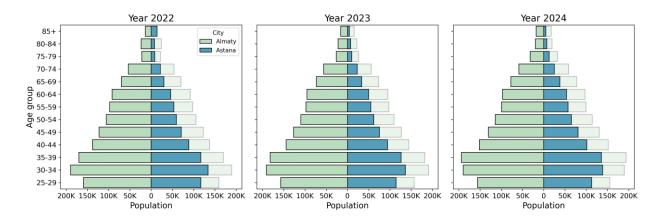
Supplementary Information (SI) for Environmental Science: Advances. This journal is © The Royal Society of Chemistry 2025

Supplementary materials

Urban PM_{2.5} Pollution in Kazakhstan: Health Burden and Economic Costs

Aset Muratuly^{a,b,c}, Ravkat Mukhtarov^{a,b}, Ivan Radelyuk^{a,b,c}, Ferhat Karaca^{d,e}, Nassiba Baimatova^{a,b,c*}


^aFaculty of Chemistry and Chemical Technology, Center of Physical Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan

^bEnvironmental and Analytical Chemistry Laboratory, Almaty, Kazakhstan

^c Department of Chemistry and Chemical Technology, Toraighyrov University, Pavlodar, Kazakhstan ^dSchool of Engineering and Digital Science, Department of Civil and Environmental Engineering, Nazarbayev University, Astana, Kazakhstan

^e The Environment and Resource Efficiency Cluster, Nazarbayev University, Astana, Kazakhstan

*Corresponding author: Nassiba Baimatova. E-mail address: baimatova@cfhma.kz

Fig. S1. Statistics of the population for Almaty and Astana for 2022-2024 by age groups. **Table S1**

The detailed population distribution and mortality rates stratified by 5-year age groups for Almaty and Astana.

City	Age group	20	22	20	23	2024		
City		population	mortality	population	mortality	population	mortality	
	25-29	159478	81	157187	74	155791	6	
	30-34	189482	177	190899	189	189598	140	
	35-39	169977	249	182115	265	193839	253	
	40-44	137981	397	144402	361	151810	36	
	45-49	122851	458	126636	460	130508	492	
	50-54	105615	575	109791	619	114159	613	
Almaty	55-59	97546	820	97640	771	99433	730	
	60-64	92014	1174	95240	1165	97045	1170	
	65-69	70132	1404	73221	1404	77568	1393	
	70-74	53874	1575	56118	1546	58458	1612	
	75-79	21886	984	26289	1139	32016	140′	
	80-84	23738	1806	22189	1448	19698	122	
	85+	13904	2051	15865	2009	17846	224	
	25-29	116898	56	114536	66	112771	8	
	30-34	133776	111	136610	101	138803	9	
	35-39	116866	171	126251	142	135818	16	
	40-44	88558	209	94408	228	101385	22	
	45-49	70936	247	75252	291	80791	26	
	50-54	59288	339	61992	340	65212	34	
Astana	55-59	53541	451	55102	406	57340	44	
	60-64	45837	571	49724	616	53557	67	
	65-69	30077	616	33615	631	37970	70	
	70-74	21321	593	23021	647	24741	69	
	75-79	8238	360	10121	449	12749	61	
	80-84	7645	627	7606	513	7095	49	
	85+	13904	587	4268	593	5056	64	

Table S2GEMM model parameters utilized for estimating mortality in the Chinese male cohort. (Burnett et al., 2018).

Cause of Death	Age Range	θ	St. Err θ	α	μ	ν
NCD+LRI	>25	0.143	0.01807	1.6	15.5	36.8
	27.5	0.1585	0.01477	1.6	15.5	36.8
	32.5	0.1577	0.0147	1.6	15.5	36.8
	37.5	0.157	0.01463	1.6	15.5	36.8
	42.5	0.1558	0.0145	1.6	15.5	36.8
	47.5	0.1532	0.01425	1.6	15.5	36.8
	52.5	0.1499	0.01394	1.6	15.5	36.8
	57.5	0.1462	0.01361	1.6	15.5	36.8
	62.5	0.1421	0.01325	1.6	15.5	36.8
	67.5	0.1374	0.01284	1.6	15.5	36.8
	72.5	0.1319	0.01234	1.6	15.5	36.8
	77.5	0.1253	0.01174	1.6	15.5	36.8
	85	0.1141	0.01071	1.6	15.5	36.8
IHD	>25	0.2969	0.01787	1.9	12	40.2
	27.5	0.507	0.02458	1.9	12	40.2
	32.5	0.4762	0.02309	1.9	12	40.2
	37.5	0.4455	0.0216	1.9	12	40.2
	42.5	0.4148	0.02011	1.9	12	40.2
	47.5	0.3841	0.01862	1.9	12	40.2
	52.5	0.3533	0.01713	1.9	12	40.2
	57.5	0.3226	0.01564	1.9	12	40.2
	62.5	0.2919	0.01415	1.9	12	40.2
	67.5	0.2612	0.01266	1.9	12	40.2
	72.5	0.2304	0.01117	1.9	12	40.2
	77.5	0.1997	0.00968	1.9	12	40.2
	85	0.1536	0.00745	1.9	12	40.2
Stroke	>25	0.272	0.07697	6.2	16.7	23.7
	27.5	0.4513	0.11919	6.2	16.7	23.7
	32.5	0.424	0.11197	6.2	16.7	23.7
	37.5	0.3966	0.10475	6.2	16.7	23.7
	42.5	0.3693	0.09752	6.2	16.7	23.7
	47.5	0.3419	0.0903	6.2	16.7	23.7
	52.5	0.3146	0.08307	6.2	16.7	23.7
	57.5	0.2872	0.07585	6.2	16.7	23.7
	62.5	0.2598	0.06863	6.2	16.7	23.7
	67.5	0.2325	0.0619	6.2	16.7	23.7
	72.5	0.2051	0.05418	6.2	16.7	23.7
	77.5	0.1778	0.04695	6.2	16.7	23.7
	85	0.1368	0.03611	6.2	16.7	23.7
COPD	>25	0.251	0.06762	6.5	2.5	32
LC	>25	0.2942	0.06147	6.2	9.3	29.8
LRI	>25	0.4468	0.11735	6.4	5.7	8.4

Table S3 Number of potential avoidable deaths from various counterfactual scenarios of reaching interim WHO PM_{2.5} targets by 2022.

Year	City	Model cohort	Model	Data	Target PM _{2.5} concentration (µg m ⁻³)				
				Source	25	15	10	5	
		w_cmc	Five causes	AirKaz	442	910	1206	1610	
				AirNow	417	884	1181	1585	
			NCD+LRI	AirKaz	508	1013	1335	1814	
	Almaty		NCDTLNI	AirNow	478	983	1304	1784	
	Annaty	wo_cmc	Five causes	AirKaz	397	853	1142	1507	
				AirNow	375	832	1121	1486	
			NCD+LRI	AirKaz	537	1073	1401	1862	
022			NCD+LNI	AirNow	506	1042	1369	1830	
ULL	Astana	w_cmc	Five causes	AirKaz		169	300	479	
				AirNow		149	280	459	
			NCD+LRI	AirKaz		177	316	522	
				AirNow	_*	156	294	501	
		wo_cmc	Five causes	AirKaz	· _*	166	293	456	
				AirNow		146	274	436	
			NCD+LRI	AirKaz		188	329	527	
				AirNow		165	306	504	
2023	Almaty	w_cmc	Five causes	·	144	603	894	1290	
			NCD+LRI		161	655	969	1439	
		wo_cmc	Five causes		135	583	866	1224	
			NCD+LRI		172	696	1016	1467	
	Astana	w_cmc	Five causes		_*	67	201	384	
			NCD+LRI			70	211	422	
		wo_cmc	Five causes			66	197	362	
			NCD+LRI			74	217	419	
2024	Almaty	w_cmc	Five causes	- AirNow		440	735	1138	
			NCD+LRI			474	795	1274	
		wo_cmc	Five causes			430	718	1082	
			NCD+LRI	_ _ _		503	829	1289	
	Astana	w_cmc	Five causes			89	233	431	
			NCD+LRI			93	246	474	
		wo_cmc	Five causes			88	228	407	
			NCD+LRI	<u>-</u> _		98	253	472	

Table S4Potential economic benefits from various counterfactual scenarios of reaching interim WHO PM_{2.5} targets by 2022 in constant 2022 million USD.

Year C	C:	Model cohort	Model	D-4- C	Target PM _{2.5} concentration (µg m ⁻³)			
	City			Data Source	25	15	10	5
4			Five causes	AirKaz	875	1,801	2,388	3,187
				AirNow	825	1,751	2,338	3,137
		w_cmc	NCD I DI	AirKaz	1,006	2,005	2,642	3,592
	A 1		NCD+LRI	AirNow	946	1,945	2,582	3,532
	Almaty		Five causes	AirKaz	785	1,689	2,261	2,983
				AirNow	743	1,647	2,219	2,941
		wo_cmc		AirKaz	1,064	2,124	2,773	3,685
000			NCD+LRI	AirNow	1,002	2,062	2,711	3,623
2022		w_cmc	Five causes	AirKaz	- - * -	334	593	949
				AirNow		294	553	908
			NCD+LRI	AirKaz		351	625	1,034
				AirNow		308	582	991
	Astana	wo_cmc	Five causes	AirKaz		328	581	902
				AirNow		289	542	863
			NCD+LRI	AirKaz		372	651	1,043
				AirNow		326	605	998
		w_cmc	Five causes	- AirNow	283	1,180	1,749	2,524
	A.1		NCD+LRI		315	1,281	1,896	2,814
	Almaty	wo_cmc	Five causes		264	1,140	1,695	2,395
2023			NCD+LRI		337	1,362	1,989	2,870
	Astana	w_cmc	Five causes		_*	132	393	751
			NCD+LRI			137	413	825
		wo_cmc	Five causes			130	385	709
			NCD+LRI			144	425	821
2024	Almaty	w_cmc	Five causes			921	1,540	2,383
			NCD+LRI			992	1,664	2,666
		wo_cmc	Five causes	•		900	1,503	2,26
			NCD+LRI			1,052	1,736	2,699
		w_cmc	Five causes			187	488	902
	A at		NCD+LRI	•		195	514	991
	Astana	wo_cmc	Five causes	•		184	478	852
			NCD+LRI			205	530	988

Text S1 Data processing and quality control measures

PM_{2.5} levels were measured in real-time by each instrument; however, hourly data was included in the datasets. Hourly PM_{2.5} data were quality-checked prior to analysis, with observations of PM_{2.5} concentrations ≤ 0 µg m⁻³ removed. Although outlier filtering using 0.1st and 99th percentiles was tested, it was not applied. Filtering out these percentiles decreased the annual mean in Almaty from 37.1 µg m⁻³ to 35.0 µg m⁻³, a reduction of approximately 5.6%.

However, since such concentrations were observed during peaks of high pollution episodes rather than isolated incidents, the decision was made to keep these values in the final analysis, as they represented actual exposure conditions rather than measurement errors. However, data from extremely high outliers (>800 µg m⁻³) were still excluded, as they indicated sensor malfunctions, data transmission errors, or exceptional pollution events rather than typical ambient conditions.

For each city, data from individual sensors were evaluated for completeness, and only those with at least 80% hourly data availability during the study period were retained to ensure temporal representativeness. Then, data from individual sensors in the Airkaz network were combined sensor by sensor and used in the GEMM model.

Hourly data were converted into daily averages for modeling, while mortality data were available on an annual basis. Therefore, annual mean PM_{2.5} concentrations calculated from the daily data were used to align the temporal resolution between the exposure and outcome datasets.

To estimate the annual population exposure for the GEMM model, hourly PM_{2.5} data were aggregated over the study year. A comparison between the hourly-based and daily-averaged concentration datasets for 2022 revealed a negligible difference in the resulting annual means (37.1 µg m⁻³ vs. 36.8 µg m⁻³, respectively). This indicates that hourly averaging has an insignificant impact on the long-term exposure estimates, since both approaches tend to the same annual averages when sufficient data coverage is available.

Using hourly data captures more detailed temporal variability and prevents potential information loss due to early aggregation. It also ensures that the annual exposure levels remain consistent with the GEMM framework. Therefore, hourly data were employed in the final mortality estimation to preserve data accuracy and maintain adherence to the original measurement resolution.

Text S2

The VSL estimates for a sample of OECD countries were 3.83 million (2011 USD, PPP-adjusted), corresponding to a GDP per capita of 37 thousand (2011 USD, PPP-adjusted).

Kazakhstan's GDP per capita in local currency (KZT) was 5,284.7 thousand, 6,002.0 thousand, and 6,659.8 thousand KZT in 2022, 2023, and 2024, respectively. The consumer price index (CPI, 2010 = 100) increased from 108.5 in 2011 to 251.1, 288.0, and 313.5 in 2022-2024, respectively. The PPP conversion factor for KZT in 2011 was 82.09 KZT per international dollar.

The U.S. consumer price index (CPI, 2010 = 100) rose from 103.2 in 2011 to 134.2 in 2022.