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Figure S1. The abundance of the 16S rRNA gene normalized to sample weight (a), and relative abundance of ARGs and intI1 gene normalized 
to copies of 16S rRNA gene copies in original soil (b) and manure (c). Error bars represent the standard deviations (n = 3). BDL, below 
detection limit.
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Figure S2. Absolute abundances of (a) blaTEM, (b) erm(B), (c) erm(F), (d) intI1, (e) tet(M), (f) tet(O), (g) tet(Q) and (h) tet(X) in surface soil at 
different sampling time (W1: week 1, W3: week 3, W6: week 6). Boxes with maximum (upper whiskers), minimum (lower whiskers) and the 
mean (Con: n = 6; T5 and T10: n = 9) ARGs abundance (hollow box) are shown. Box groups with different letter are significantly different 
according to pairwise-comparison between treatment scenarios (p < 0.05).
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Figure S3. Absolute abundances of (a) blaTEM, (b) erm(B), (c) erm(F), (d) intI1, (e) tet(M), (f) tet(O), (g) tet(Q) and (h) tet(X) in rhizosphere 
soil of different sampling locations (B: bottom, M: middle, T: top). Error bar indicates the mean (n = 3) with standard deviation. Bar group with 
different letter indicates significantly difference (Kruskal-Wallis rank sum test and multiple pairwise-comparison between treatment scenarios, p 
< 0.05). 
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 Figure S4. Absolute abundances (log (gene copies per gram dry weight)) of target ARGs and intI1 in 0.0
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endosphere (a), episphere (b) and root (c) of lettuce. Error bar indicates the mean (n = 3) abundance with standard deviation. Bar with different 
letter indicates significantly difference (t-test, p < 0.05). 
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Table S1. Primers used for ARG quantification.

Gene Primer Primer Sequence (5’–3’)
Annealing 
temperature

Reference

FW CGGTGAATACGTTCYCGG
16S

RV GGWTACCTTGTTACGACTT
  56 oC Suzuki et al., 2000

FW TTCCTGTTTTTGCTCACCCAG
blaTEM RV CTCAAGGATCTTACCGCTGTTG

  60 oC Bibbal et al., 2007

FW TGCCGTGATCGAAATCCAGATCCT
intI1

RV TTTCTGGAAGGCGAGCATCGTTTG
  65 oC Rosewarne et al., 2010

FW GGTTGCTCTTGCACACTCAAG
erm(B)

RV CAGTTGACGATATTCTCGATTG
  65 oC Aminov et al., 2010

FW TCTGGGAGGTTCCATTGTCC
erm(F)

RV TTCAGGGACAACTTCCAGC
  65 oC Aminov et al., 2010

FW ACGGARAGTTTATTGTATACC
tet(O)

RV TGGCGTATCTATAATGTTGAC
  50 oC Aminov et al., 2001

FW AGAATCTGCTGTTTGCCAGTG
tet(Q)

RV CGGAGTGTCAATGATATTGCA
  63 oC Aminov et al., 2001

tet(M) FW GCA ATTCTACTGATTTCTGC
RV CTGTTTGATTACAATTTCCGC

  60 oC Laht et al., 2014

tet(X) FW GAAAGAGACAACGACCGAGAG 
RV CTTAGCCTTACCAATGGGTGT 

  56 oC Huang et al., 2015
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