Electronic Supplementary Information (ESI)

Poly(ethyleneimine) modified TiO₂ nanorods for adsorptive recovery of Lithium from

battery cathode and brine solution

K.Krishna Priyanka^a, M.Christina Nilavu^a, B. Arun Raj^b, Himanshu Aggarwal^{a*}, N.Rajesh ^{a*}

^aDepartment of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad

Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India.

^bMaseeh Department of Civil, Architectural and Environmental Engineering, University of

Texas, Austin, TX, 78712, USA.

*Corresponding authors

E-mail addresses: nrajesh@bits pilani.ac.in (N. Rajesh), himanshu.aggarwal@hyderabad.bits-

pilani.ac.in (Himanshu Aggarwal)

1. UV-Vis Spectrophotometric analysis of Lithium using Thorin

Lithium estimation was done using Thorin (Disodium 4-[2-(2-arsonophenyl)

hydrazin-1-ylidene]-3-oxo-3,4 dihydronaphthalene-2,7-disulfonate) as a complexing agent in

the presence of a highly basic medium, it forms a stable orange-coloured complex; for this

analysis, 0.2 % Thorin was prepared by dissolving 0.2 g of Thorin in 100 mL of Deionised water.

20 % w/w KOH was prepared by dissolving 4g of KOH in 20 mL. Before the analysis, Lithium

sample solutions ranging from 2 ppm to 10 ppm were prepared with proper dilutions. Initially,

0.1 mL of KOH, followed by 0.2 mL of Lithium sample solution, 0.1 mL of Thorin, and 7 mL of

acetone, were added in a 10 mL standard flask and made up to the mark with water to achieve

a total volume of 10 mL. A reagent blank (10 mL) was also prepared without the addition of

the analyte. The mixture was kept undisturbed for about 35min

1

after which the UV measurements were taken. Upon addition of lithium, it undergoes complexation with the Thorin, causing a Bathochromic shift as observed in the spectrum (Fig.S1). The λ_{max} of the Thorin reagent blank was found to be 443 nm, and that of the Lithium Thorin complex was at 473 nm. A linear calibration graph was developed for the same, as shown in (Fig.S1), and the regression coefficient (R²) was found to be 0.966.

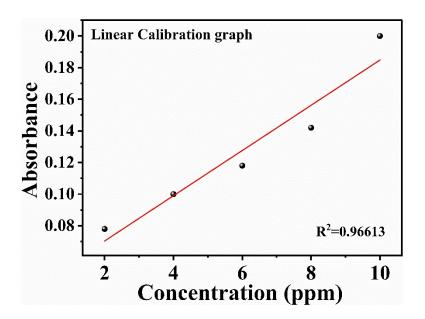


Fig S1. Linear calibration plot using UV-spectrophotometry

2. Analysis of lithium using Ion-Chromatography

Lithium was also quantified with the help of Ion Chromatography. Metrohm 883 Basic IC Plus paired with a conductivity detector was used, and the column utilized for estimation was Nucleosil 5SA-125/4.0, where the stationary phase is a polymer functionalized with negatively charged sulphonate groups (-SO₃) that help with the cation exchange. The eluent that was used was 7.5mmol/L Nitric acid and 4.0 mmol/L Tartaric Acid, prepared by dissolving 475 μ L of HPLC grade conc. Nitric acid, 0.600 g of Tartaric acid and dissolving it in 1000 mL of Milli-Q water, which was then filtered through a PVDF filter of pore size 0.45 μ into a standard eluent

bottle after which it was degassed in an ultrasonicator bath for 10 min and then used. Lithium sample solutions of known concentrations ranging from 2 ppm to 10 ppm were used to build the calibration graph, as shown in (Fig.S2). Retention time was found to be 8.3 μ S/cm. A linear calibration graph was developed for the same, where the regression coefficient (R²) was found to be 0.9866.

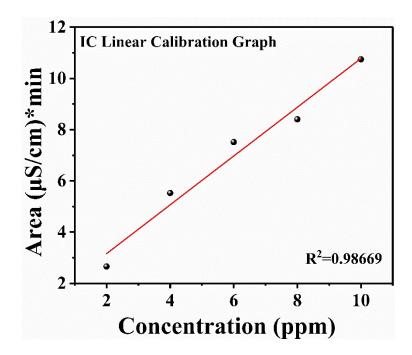


Fig S2. Linear calibration plot obtained using Ion-Chromatography

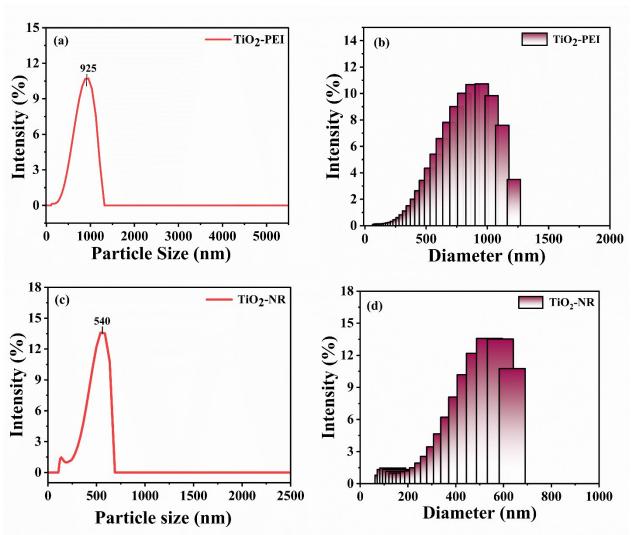
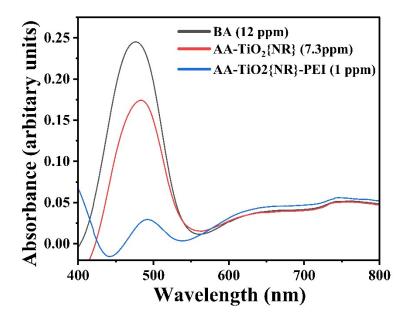



Fig S3. (a) DLS particle size distribution curve of TiO_2 -NR (b) DLS particle size distribution histogram of TiO_2 -NR (c) DLS particle size distribution curve of TiO_2 (NR)-PEI (d) DLS particle size distribution histogram of TiO_2 (NR)-PEI

3. Comparison of the adsorption capacity with TiO₂(NR) and TiO₂(NR)-PEI

Adsorption was carried out by taking 10 ppm of lithium solution in a centrifuge tube with 0.15 g of adsorbent and kept for adsorption using a conventional stirring method on a vortex shaker for 180 min at 720 rpm. It has been observed that when $TiO_2(NR)$ was used, there was 39% adsorption, and when $TiO_2(NR)$ -PEI was used, 91% adsorption was observed. Thus, a synergistic contribution of the $TiO_2(NR)$ and PEI led to lithium adsorption. It is

evident from the absorption spectra (Fig S4) that the inclusion of PEI brings about a significant dynamic change, resulting in the effective adsorption of Li on the PEI-anchored TiO_2 surface.

Fig S4: UV-Vis Spectrum for the adsorption of lithium using (a) $TiO_2\{NR\}$ and (b) $TiO_2\{NR\}$ -PEI where BA refers to Before adsorption and AA refers to After adsorption.

Table S1. Isotherm parameters for Lithium adsorption

Isotherm models	Isotherm parameters	Values
Langmuir	q _{max} (mg g ⁻¹)	2.703
	K_L (L mg ⁻¹)	0.0535
	R^2	0.998
Freundlich	$K_F = (\text{mg}^{1-1/n} \text{g}^{-1} \text{L}^{1/n})$	0.955
	n	4.545
	R^2	0.996
Temkin	b_T (J mol ⁻¹)	75.07 ×10 ⁻²
	K_T (L g ⁻¹)	2.13 ×10 ³
	R^2	0.933

 $\textbf{Table S2}. \ \textbf{Kinetic parameters for the adsorption of Lithium}.$

Kinetics models	Parameters	Values	
pseudo-first order	k_1 (min ⁻¹)	0.0033	
	$q_{e1} \; (\text{mg g}^{-1})$	2.667	
	R^2	0.981	
pseudo-second order	k_2 (g mg ⁻¹ min ⁻¹)	0.011	
	$q_{e2} \pmod{g^{-1}}$	2.326	
	R^2	0.944	
Intra-particle diffusion	C ₁ (mg g ⁻¹)	0.329	
	$K_{i1} \pmod{g^{-1} \min^{1/2}}$	0.095	
	R^2	0.998	

C ₂ (mg g ⁻¹)	0.291
$K_{i2} \pmod{\mathrm{g}^{-1} \min^{1/2}}$	0.113
R^2	0.997

Table

S3. Thermodynamic parameters (enthalpy, entropy, and free energy changes) for the adsorption of Lithium.

Temperature	ΔG°	ΔH°	ΔS°	
(Kelvin)	(kJ mol ⁻¹)	(kJ mol ⁻¹)	(kJ mol ⁻¹ K ⁻¹)	R ²
303	-1.106	15.589	0.0549	0.9613
313	-1.899			
323	-2.401	-		
333	-2.667			

Table S4. Comparison table of Lithium Adsorption performance with other adsorbents.

Sl.No	Adsorbent used	pH, Time	Adsorption	Reference
		required	Capacity (mg g ⁻¹)	
1.	ANa: Amberlite sodium form	7, 24 h	4.1	2
2.	Li/AL – LDH (D)	Acidic and Basic,	4.0	3
		3.3 h		
3.	Lithium aluminium hydroxide	10 h	5.90	4
4.	Fe ₃ O ₄ nanoparticles coated	4, 5 h	4.06	5
	LDH-MLDH 4			
5.	LiCl · 2Al (OH)₃ · nH2O	4 h	3.0	6
6.	TiO₂(NR)-PEI	11, 3 h	2.76	(This
				study)

Table S5. Elemental composition from the EDS spectra.

Element	Line	Apparent	k Ratio	Wt%	Wt%	Atomic %	Standard	Factory
	Type	Concentr-			Sigma		Label	Standard
		ation						
0	K series	76.54	0.25757	46.00	0.15	71.83	SiO ₂	Yes
Ti	K series	242.21	2.42214	54.00	0.15	28.17	Ti	Yes
Total:				100.00		100.00		

References:

- 1 S. R. Levitt, *Acta Chimica Slovenica*,2023,**70(3)**,430-439.
- J. Lemaire, L. Svecova, F. Lagallarde, R. Laucournet and P. X. Thivel, *Hydrometallurgy*, 2014, **143**, 1–11.
- 3 J. Zhong, S. Lin and J. Yu, *J. Colloid Interface Sci.*, 2020, **572**, 107–113.
- 4 H. Jiang, Y. Yang and J. Yu, Sep. Purif. Technol., 2020, **241**, 116682.
- 5 J. Chen, S. Lin and J. Yu, *J. Hazard. Mater.*, 2020, **288**, 122101.
- 6 L. T. Menzheres, A. D. Ryabtsev and E. V. Mamylova, *Theor. Found. Chem. Eng.*, 2019, **53**, 821–826.