Supporting information

Tungsten Nitride on Porous Carbon Support as a Highly Durable Electrocatalyst for Hydrogen Evolution Reaction

Shankar Baskaran, Gokul Pandiyan Mageswari, J. Anjana and Azhagumuthu Muthukrishnan*

School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura-695551, Kerala, India

Email: <u>muthukrishnan@iisertvm.ac.in</u>

Synthesis of control samples

Synthesis of β-W₂N

Tungsten nitride was synthesised without carbon support as a control experiment by mixing WO₃ and urea in the ratio of 1:20, followed by the pyrolysis at 900 °C for 2 hours under N₂ atmosphere. The sample was confirmed using powder XRD as β -W₂N.

Synthesis of N-doped carbon

The N-doped carbon (carbon source is Ketjen Black) was synthesised by mixing the KB and urea in the ratio of 1:10, and pyrolysed at 900 °C for 2 hours under N₂ atmosphere. The resulting product is referred to as N-doped carbon (NC).

Electrochemical surface area calculation for WN/NC catalysts

The electrochemically active surface area (ECSA) of the catalysts was calculated from the double-layer capacitance obtained by plotting the scan rate versus charging current at a particular potential. Previously, the cyclic voltammetry experiments were performed at different scan rates at N₂-saturated electrolytes (McCrory *et al.*, *J. Am. Chem. Soc.* **2015**, *137* (13), 4347-4357). Subsequently, the ECSA of the material was calculated from the equation given below.

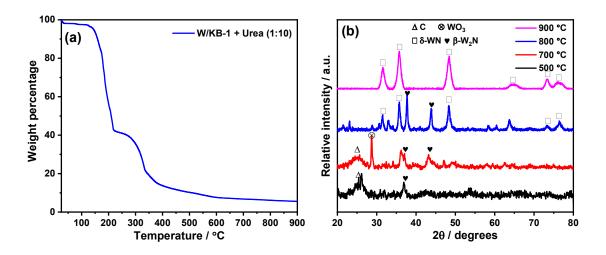
$$ECSA = \frac{C_{dl}}{C_s}$$

Where the value of C_S is taken as 0.04 mF cm⁻² and 0.035 mF cm⁻² for alkaline and acidic electrolyte, respectively.

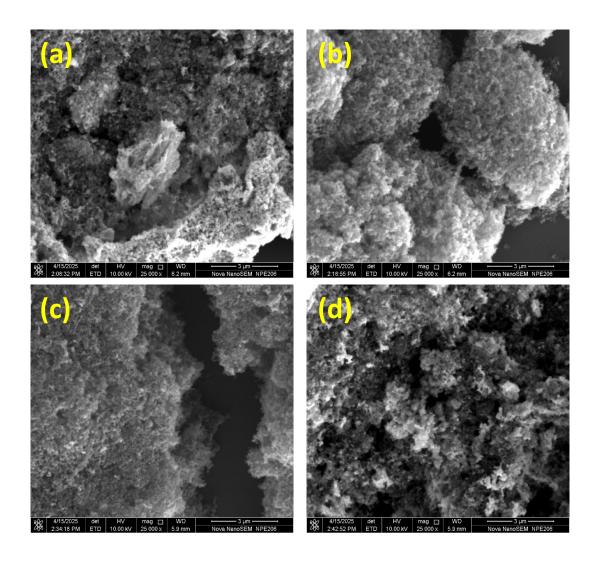
Electrochemical surface area (ECSA) calculation for Pt/C catalyst

Similarly, the ECSA of the benchmark Pt/C catalyst is calculated from the H-UPD (hydrogen under potential deposition) region, obtained from the cyclic voltammetry at different electrolytes. The H-adsorption region (0.4 - 0 V) was chosen to calculate the ECSA of Pt/C catalysts. The charge of the H-adsorption was calculated from the CVs and the scan rate, and the ECSA is calculated as shown below.

$$ECSA = \frac{Q_H}{Q_S}$$


where $Q_{\rm H}$ represents the charge corresponding to the hydrogen adsorption, and $Q_{\rm S}$ is taken as 230 μ C cm⁻² and 145 μ C cm⁻² for 0.5 M H₂SO₄ and 1 M KOH solutions, respectively. (Vidal-Iglesias *et al.*, *ACS Catal.* 2012, 2, 901–910)

TOF calculation

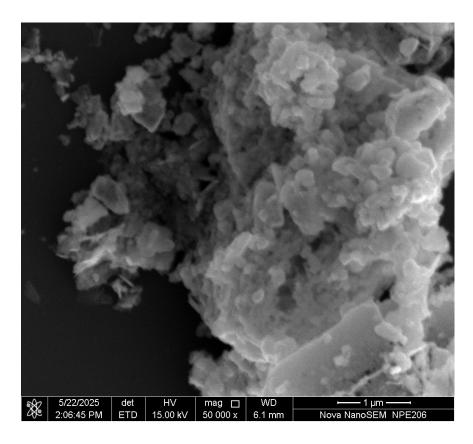
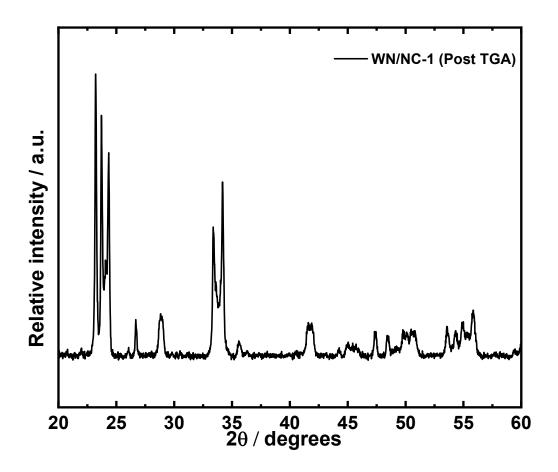
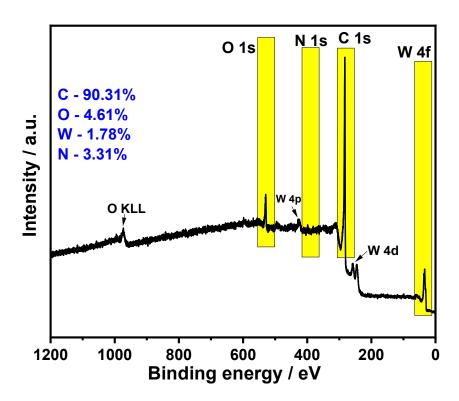

The TOF of the catalyst was calculated as reported earlier (N. Logeshwaran *et. al.*, *J. Energy Chem.*, 86, 2023, 167-179) using the formula given below.

$$TOF = \frac{j}{F \times n \times \Gamma/N_{A}}$$

Where j, N_A , F, n and Γ correspond to current density, Avagadro number, Faraday constant, number of electrons and number of active sites.

Fig. S1. (a) The thermogravimetric analysis of the precursors (Na₂WO₄·2H₂O+KB+urea) in N₂-atmosphere and (b) powder XRD patterns of heated precursors at various temperatures.

Fig. S2. Scanning electron microscopy images of (a) WN/NC-1, (b) WN/NC-2, (c) WN/NC-3 and (d) WN/NC-1A catalysts.

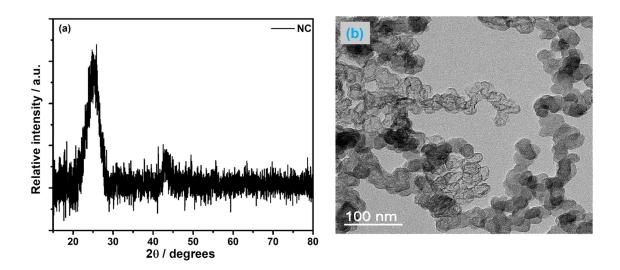

Fig. S3. Scanning electron microscopic image of β -W₂N catalyst

Fig. S4. Powder X-ray diffraction pattern of the residue obtained from the thermogravimetric experiment of WN/NC-1 under an air atmosphere.

Fig. S5. Survey XPS of the WN/NC-1 catalyst.

Fig. S6. Structural and morphological analysis of N-doped carbon (a) PXRD and (b) HR-TEM image

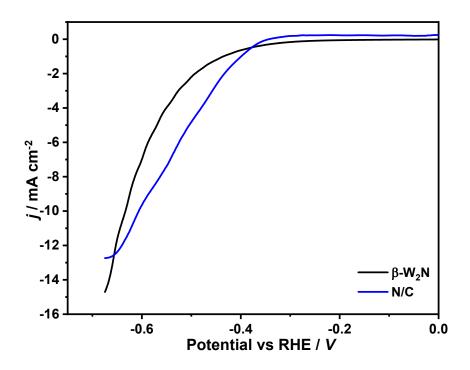
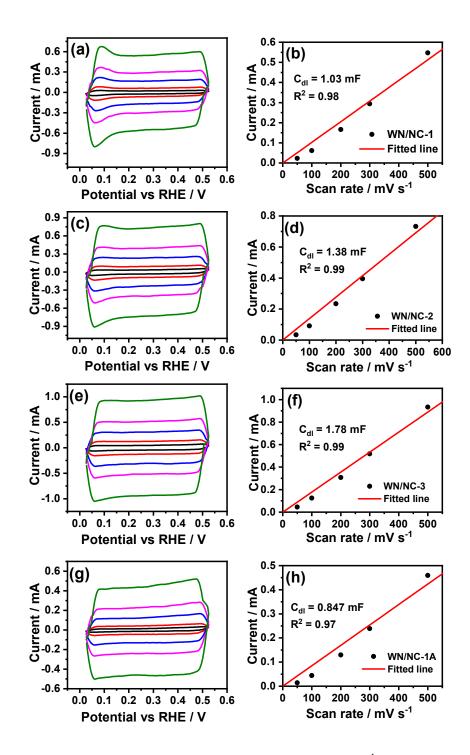
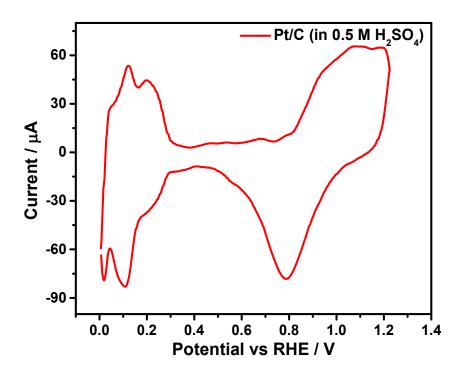
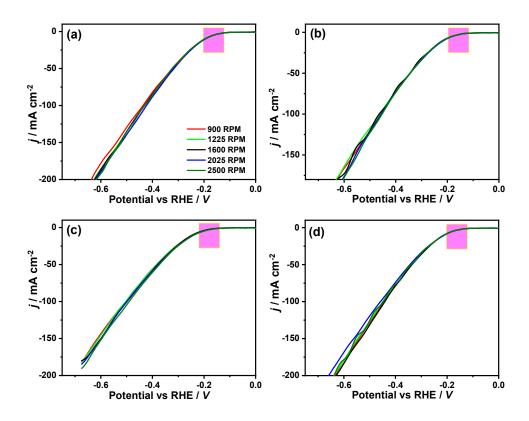
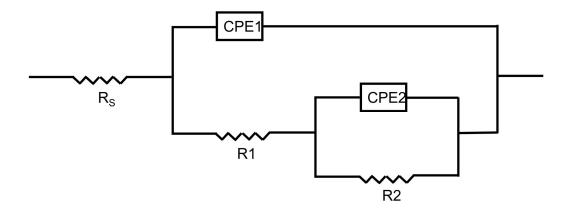



Fig. S7. Linear sweep voltammogram of β -W₂N and N/C control samples carried out in 0.5 M H₂SO₄ as electrolyte

Fig. S8. Cyclic voltammetry in different scan rates (black: 50 mVs⁻¹; red: 100 mVs⁻¹; green: 200 mVs⁻¹; blue: 300 mVs⁻¹; magenta: 500 mVs⁻¹;) and current vs scan rate plot of WN/NC-1 (a & b), WN/NC-2 (c & d), WN/NC-3 (e & f) and WN/NC-1A (g & h) in 0.5 M H₂SO₄ as electrolyte.

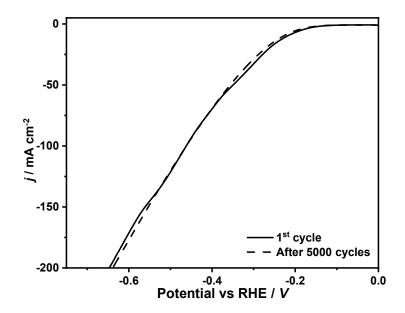

Fig. S9. Cyclic voltammogram of Pt/C catalyst at scan rate of 0.05 V $\rm s^{\text{--}1}$ in 0.5 M $\rm H_2SO_4$ electrolyte

Fig. S10. Linear sweep voltammograms of (a) WN/NC-1, (b) WN/NC-2, (c) WN/NC-3 and (d) WN/NC-1A catalysts on various rotational speeds in 0.5 M H₂SO₄ as electrolyte

Fig. S11. Armstrong-Henderson equivalent circuit modified with constant phase element for investigation of electrochemical impedance spectroscopy

Fig. S12. Linear sweep voltammogram of WN/NC-1A catalyst before and after 5000 cyclic voltammetry cycles in HER carried out in 0.5 M H₂SO₄ as electrolyte

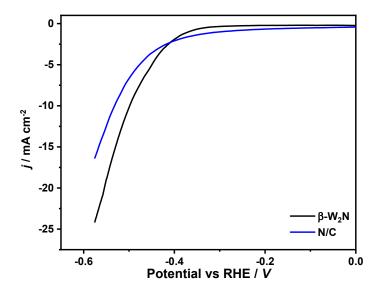
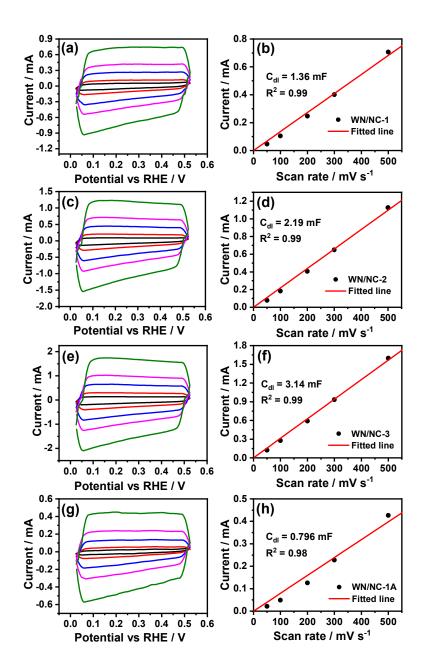
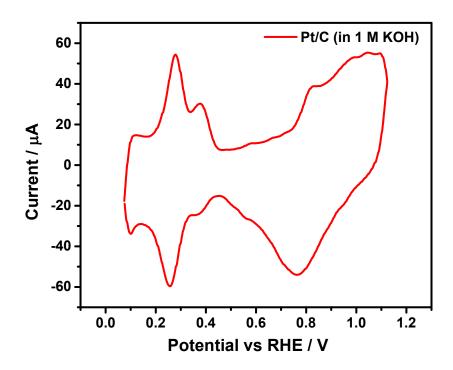
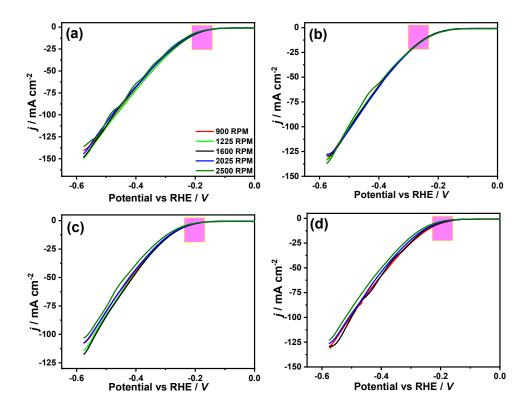
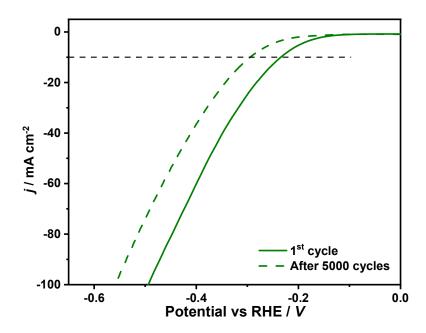



Fig. S13. Linear sweep voltammogram of β -W₂N and N/C control samples carried out in 1 M KOH as electrolyte

Fig. S14. Cyclic voltammetry in different scan rates (black: 50 mVs⁻¹; red: 100 mVs⁻¹; green: 200 mVs⁻¹; blue: 300 mVs⁻¹; magenta: 500 mVs⁻¹;) and current vs scan rate plot of WN/NC-1 (a & b), WN/NC-2 (c & d), WN/NC-3 (e & f) and WN/NC-1A (g & h) in 1 M KOH as electrolyte.

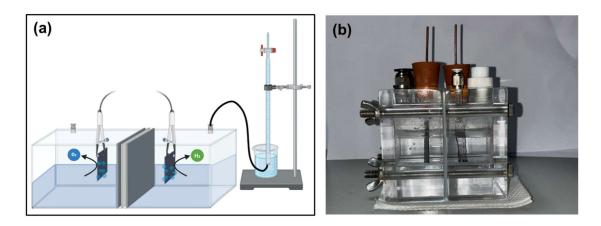

Fig. S15. Cyclic voltammogram of Pt/C catalyst at scan rate of $0.05~\rm{V}~\rm{s}^{\text{--}1}$ in 1 M KOH as electrolyte

Fig. S16. Linear sweep voltammograms of (a) WN/NC-1, (b) WN/NC-2, (c) WN/NC-3 and (d) WN/NC-1A catalysts on various rotational speeds in N₂-saturated 1 M KOH electrolyte

Fig. S17. Linear sweep voltammogram of WN/NC-1A catalyst before and after 5000 cyclic voltammetry cycles carried out in 1 M KOH as electrolyte

Fig. S18. (a)Typical pictorial representation of an eudiometry set-up to measure the volume of H₂ gas evolved from the water electrolyser and (b) the photographic image of the electrolyser.

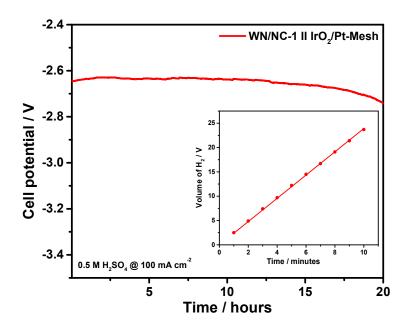
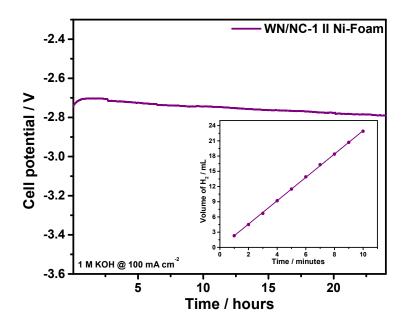



Fig. S19. Chronopotentiometry curve of WN/NC-1 catalyst employed as cathode in PEM water electrolyser at constant current density of $100 \text{ mA} \text{ cm}^{-2}$ with $0.5 \text{ M} \text{ H}_2\text{SO}_4$ as electrolyte

Fig. S20. Chronopotentiometry curve of WN/NC-1 catalyst employed as cathode in AEM water electrolyser at constant current density of 100 mA cm⁻² with 1 M KOH as electrolyte

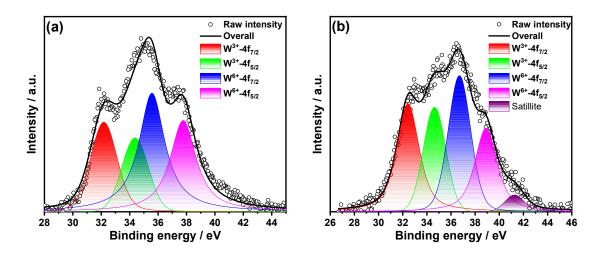


Fig. S21. The W-4f XPS of the WN/NC-1 after 100 hours of electrolysis in (a) 0.5 M H₂SO₄ and (b) 1 M KOH electrolytes.

 $\label{eq:continuous_state} \textbf{Table S1.} \ \text{Parameters obtained from the analysis of the N_2-sorption isotherm of WN/NC catalysts}$

Compounds	S_{BET} (m^2 g^{-1})	$V_{\rm BET}$ (cm ³ g ⁻¹)	S_{micro} (m ² g ⁻¹)	V _{micro} (cm ³ g ⁻¹)
WN/NC-1	128.43	0.263	-	-
WN/NC-2	321.16	0.426	47.87	0.024
WN/NC-3	480.22	0.546	99.36	0.048
WN/NC-1A	108.12	0.203	-	-

Table S2. The solution resistance (R_s) , charge transfer resistance (R_{ct}) and pseudocapacitive resistance (R_{ps}) parameters obtained from Electrochemical impedance spectroscopy (EIS) technique for WN/NC catalysts in 0.5 M H₂SO₄ as electrolyte

Compounds	$R_{\mathrm{s}}\left(\Omega\right)$	$R_{\mathrm{ct}}\left(\Omega\right)$	$R_{ps}\left(\Omega\right)$
WN/NC-1	5.4	18.02	0.351
WN/NC-2	5.4	25.54	0.124
WN/NC-3	5.5	26.48	0.977
WN/NC-1A	6.2	25.16	0.895

Table S3. The solution resistance (R_S) , charge transfer resistance (R_{ct}) and pseudocapacitive resistance (R_{ps}) parameters obtained from Electrochemical impedance spectroscopy (EIS) technique for WN/NC catalysts in 1 M KOH as electrolyte

Compounds	$R_{\mathrm{S}}\left(\Omega\right)$	$R_{\mathrm{ct}}\left(\Omega\right)$	$R_{\mathrm{ps}}\left(\Omega\right)$
WN/NC-1	6.2	20.56	0.624
WN/NC-2	5.8	32.16	0.465
WN/NC-3	6.4	32.75	0.346
WN/NC-1A	6.2	34.19	0.122