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1. Experimental Section:

General considerations. All experiments were carried out employing standard Schlenk
techniques under an atmosphere of dry nitrogen employing degassed, dried solvents. Non-
halogenated solvents were tested with a standard purple solution of sodium benzophenone ketyl
in tetrahydrofuran to confirm effective moisture removal. ds-benzene was dried over molecular
sieves and degassed by three freeze-pump-thaw cycles. [Cp*Rh(NBD)]* and {HB(CeF5)2}2> were
prepared using literature procedures - {DB(CsFs)2}2 was compared by analogy to {HB(CsFs)2}2
using D-SiEts purchased from Sigma Aldrich. All other reagents were purchased from

commercial vendors and used without further purification unless otherwise stated.

Physical methods. All NMR data were recorded with a Bruker AVIII HD 400 MHz or a Bruker
Neo 600 MHz instrument. 'H NMR spectra are reported in parts per million (ppm) and are
referenced to residual solvent e.g., 'H(CsDs): 0=7.16; 3C(CsDs): 0=128.06; coupling constants are
reported in Hz. C and 3P NMR spectra were performed as proton-decoupled experiments
(unless explicitly stated otherwise) and are reported in ppm. n.o. = not observed. Mass

spectrometry was carried out with a Thermo Scientific Orbitrap Exploris 120 instrument.
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2. Preparation of Compounds:

[Cp*Rh(NBD)]' (1, C21H2Rh, Mw = 331.28 g/mol): In the glovebox, [Cp*Rh(u- ﬁ
Cl)(C]2 (50 mg, 0.081 mmol), norbornadiene (20 mg, 0.22 mmol, 2.7 equivs.), and th'

Zn metal (100 mg, 1.53 mmol) were combined in a 20 mL scintillation vial ~

equipped with a stir bar and dissolved in approximately 5 mL of THF and stirred W
for 24 h resulting in a dark orange/red solution. The reaction was filtered, washed with pentane
and allowed to recrystallize at room temperature through evaporation (33 mg, 60%). 'H NMR
(400 MHz, CsDs, 298 K): du = 3.44 (m, 4H), 2.57 (m, 2H), 1.85 (s, 15H; Cp*(CHzs)) 1.03 (app. t, 2H, |

=1.6 Hz; NBD CH>).
[Cp*Rh(1-boraindene-F)] (2-F;, C»H2BFsRh, Mw = 656 g/mol) and
[Cp*Rh(1-boraindene-H)] (2-H; C20H24BFsRh, Mw = 638 g/mol): In the @

Cp*Rh — B—CSFS
glovebox, [Cp*Rh(NBD)] (35 mg, 0.10 mmol) and HB(CsF5)2 (35 mg, 0.10 = \@\
F

3

mmol) were combined in 2 mL toluene. The reaction was stirred for 1 h H

at room temperature during which the solution turned from yellow © R
orange to dark orange. The reaction mixture was then evaporated to @
dryness in-vacuo. 1 mL of pentane was added to dissolve the solid Cp*RFh— B—CeFs
material and the sample was placed on a shelf at 25 °C overnight, 7\@\[:4
depositing orange crystals of 2-H and 2-F as a 1:1 mixture (17 mg, 26%). & s 2F

Isolated yields ranging from 25-30% were consistently obtained (Figure S13 shows crude versus
recrystallized). "H NMR (400 MHz, CsDs, 298 K): 61= 6.88 (ddd, *Jrr=11.2 Hz, 4Jrr="7.0 Hz, *Jrr=
1.5 Hz; 2-H ArH), 3.09 (1H, 2-H NBD(CH)), 3.03 (1H, 2-F NBD(CH)), 2.84 (1H, 2-H NBD(CH)),
2.78 (1H, 2-F NBD(CH)), 1.25 (15H; 2-F Cp*(CHs3)), 1.21 (15H; 2-H Cp*(CHs)), 1.59-1.54 (4H, 2-H +
2-FNBD(CH)), 1.33 (2H, 2-H + 2-F NBD(CH) by 'H-'H COSY), 1.14-1.10 (4H, 2-H + 2-F NBD(CH)),
0.92 (2H, 2-H + 2-F NBD(CH) by 'H-'H COSY). “F{'H} NMR (564.8 MHz, CsDs, 298 K): 5¢--127.3
(m, 2F; 2-H 0-B(CsF5)), -127.4 (m, 2F; 2-F 0-B(CeFs)), -131.5 (m, 1F; 2-F, Fs), -136.2 (dd, 3Jrr=17.8 Hz,
Yrr= 3.3 Hz, 1F; 2-H, F1), -145.9 (dd, 3Jrr=16.5 Hz, %Jrr= 3.5 Hz, 1F; 2-H, Fs), -151.5 (dd, Jrr=23.7
Hz, Jrk=16.2 Hz, Jrr=2.2 Hz, 1F; 2-F, F7), -156.8 (app. t, Jer=20.5 Hz, 1F; 2-F p-B(CeFs)), -157.1 (app.
t, Jer=20.7 Hz, 1F; 2-H p-B(CeFs)), -160.0 (app. t, Jer=16.7 Hz, 1F; 2-F, F¢), -163.4 (app. t, Jer=16.5
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Hz, 1F; 2-H, F2), -163.7 (m, 2F; 2-H m-B(CsFs)), -164.2 (m, 2F; 2-F m-B(CsFs)), -164.9 (app. t, Jrr=17.6

Hz, 1F; 2-F, Fs). "B{"H} NMR (128.3 MHz, CsDs, 298 K): 88- 4.6 (A12 =250 Hz). B*C{'"H} NMR (125.8

MHz, CsDs, 298 K, select signals): 5c= 148.1 (dm, Jrc = 238 Hz, 0-B(CsF5)), 138.8 (dm, Jgc = 269

Hz p-B(CeFs)), 138.0 (dm 'Jgc = 256 Hz, m-B(CsFs), n.o. (i-B(CeFs)), 112.8, 108.1, 107.6, 95.9 (YJrnc=

6.6 Hz; Cp*(C)), 95.3 (Yrnc= 6.3 Hz; Cp*(C)), 47.9, 47.2, 46.9, 39.4, 39.2, 39.1, 38.8, 37.0, 36.69, 27 .4,

27.3, 26.6, 26.4, 8.66 (Cp*(CHs), 8.45 (Cp*(CHs). HRMS (APCI): m/z [M]* calcd. for 2-H:

[CoH24BFsRh]*: 638.090; found: 638.089, m/z [M]* calcd. for 2-F [C2oH23BFoRh]": 656.080; found:

656.079.

Alternative Reaction Conditions:

Reaction at -78 °C. In a glovebox, [Cp*Rh(NBD)] (18 mg, 0.05 mmol) and HB(C¢Fs). (19
mg, 0.05 mmol) were independently weighed and dissolved in ~1 mL of toluene and
cooled to —78 °C in a cold well. Both reagents were mixed at —78 °C and stirred for 30
minutes, then allowed to warm to room temperature. The solution was transferred to a J.
Young NMR tube and analyzed by YF{1H} NMR spectroscopy, which indicated exclusive
formation of 2-F in 24% yield by YF{'H} NMR spectroscopy using fluorobenzene as an

internal standard.

Reaction using [D(BCeFs)2]2: In a glovebox, [Cp*Rh(NBD)] (6 mg, 0.018 mmol) and
DB(CsFs): (6 mg, 0.017 mmol) were dissolved in 3 mL of toluene at 25 °C. The reaction
mixture was stirred for 30 minutes, transferred to a J. Young NMR tube, and analyzed by
PF{1H} NMR spectroscopy, which indicated formation of 2-F:2-H in a 3:1 ratio in 28% and

8% yield by ¥F{*H} NMR spectroscopy using fluorobenzene as an internal standard.

Reaction with B(CeFs)s additive: In a glovebox, [Cp*Rh(NBD)] (17 mg, 0.05 mmol) was
added to an 3 mL toluene solution at 25 °C containing a 1:1 mixture of B(CeFs)3 (9 mg, 0.03
mmol) and HB(CeFs)2 (9 mg, 0.02 mmol). The reaction mixture was stirred for 30 minutes,

transferred to a J. Young NMR tube, and analyzed by F{*H} NMR spectroscopy, which
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indicated exclusive formation of 2-F in 28% yield by “F{*H} NMR spectroscopy using

fluorobenzene as an internal standard.
exo-Bicyclo[2.2.1]hept-2-yldi(pentafluorophenyl)borane (3; CisHsBFio,
Mw =438.1 g/mol): In the glovebox, HB(CsFs)2 (37.5 mg, 0.11 mmol) and eXOZbBTCGFS)z
norbornadiene (10 mg, 0.11 mmol) were combined in a 20 mL
scintillation vial equipped with a stir bar and dissolved in approximately 5 mL of toluene and
stirred for 5 mins resulting in a clear colorless solution. The reaction was filtered and washed
with cold pentane, giving a colorless oily solid (33 mg, 69%). 'H NMR (400 MHz, C¢Ds, 298 K):
ou = 6.15 (m, 1H), 5.96 (m, 1H), 2.95 (s, 1H), 2.78 (s, 1H), 1.83 (m, 1H), 1.69 (m, 1H), 1.31 (m, 1H),
1.20 (m, 1H), 0.78 (m, 1H). YF{'H} NMR (564.8 MHz, CsDs¢, 298 K): dr = -129.9 (m, 2F, 0-CsFs), -
148.6 (t, Jer = 20.1 Hz, 1F, p-CeFs), -160.9 (m, 4F, m-CeFs). "B{'H} NMR (128.3 MHz, CsDs, 298 K):
d8=73.6 (A12 =800 Hz). *C{'"H} NMR (125.8 MHz, C¢Ds, 298 K): c= 146.3 (dm, 'Jzc = 238 Hz, o-
B(CsFs)), 143.1 (dm, 'Jrc = 269 Hz p-B(CsFs)), 137.98, 137.7 (dm 'Jrc = 256 Hz, m-B(CsFs), n.o. (i-
B(CsFs)), 135.8,47.7,45.4, 43.0, 41.9 (br), 28.6. N.B. A formal exo-addition product is consistent with

the known stereochemistry for additions of boranes to bicyclic olefins.?

Attempted cyclization using 3. In a J. Young NMR tube, complex 3 (10 mg, 0.0068 mmol) was
combined with either 10 or 100 mol% of [Cp*Rh(NBD)] (relative to 3). The mixture was dissolved
in 500 puL of toluene-ds and heated at 40 °C for 15 h. No conversion of 3 was observed, as

determined by F{'H} NMR spectroscopy.

Attempted reactions of 2-H/F. A 1:1 mixture of complexes 2-H and 2-F (5-10 mg) was subjected
to a range of small-molecule substrates (1-5 equivs., ~3 atm for gasses), including CO,, CO,
benzaldehyde, phenylacetylene, acetonitrile, and 2,6-dimethylphenylisonitrile, with no
observable reactivity. Similarly, attempts to engage these complexes with donor ligands such as
DMAP, PPh;, PCys, and dppe also failed to yield any identifiable products. Reactions with
oxidants such as I, and PhICl,, intended to generate Rh(IIl) species, resulted in mixtures of

unidentified products, suggesting non-selective or complex reactivity pathways.
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3. NMR Spectroscopy:
Figure S1. 1, '"H NMR, CsDs, 400 MHz, 298 K.
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Figure S2. 2-F + 2-H, '"H NMR, C¢Ds, 400 MHz, 298 K.

&

Cp*Rh—— B—CgFs
F
H
F
E2H

+ Cp*R

2 I I I Ippm]I

01MMIANInr\HMN*YMNI\QMNQNMM?QQM?@&V\QQ
G\M'-1OVlhHMNG\wwl\mmHVOmMNNWMNQT\\DMWLﬁ

T

B CeFs

__6.6 733 {

T T T T T
10 8 6

S6



Figure S3. 2-F + 2-H, 'H NMR (expansion showing aliphatic region), CsDs, 400 MHz, 298 K.
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Figure S4. 2-F + 2-H, '"H NMR (expansion showing Ar-H of 2-H), CsDs, 400 MHz, 298 K.
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Figure S5. 2-F + 2-H, 'H-'"H COSY NMR, C¢Ds, 564.8 MHz, 298 K.
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Figure Sé6. 2-F + 2-H, F NMR, CsDs, 564.8 MHz, 298 K.
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Figure S7. 2-F + 2-H, F NMR, CsDs, 564.8 MHz, 298 K.
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Figure S9. 2-F + 2-H, F NMR (expansion), CsDs, 564.8 MHz, 298 K.
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Figure 510. 2-F + 2-H, F NMR (expansion), C¢Ds, 564.8 MHz, 298 K.
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Figure S11. 2-F + 2-H, “F-F COSY NMR, CsDs, 564.8 MHz, 298 K.

0-CoFs p-CeFs
o+e F o0 _m-CgFs
Fr R ¢ F o:00
4 ® ° Fe
[ J
L | |
F
.5+.|.:. L 45@® 2 ®s K
FGOZ—J ®e6/7 5/6 ®
eve ]  Cp*Rh—— B—CF; "
£
Fe—| 47® H 0 @®e6/7
£ F,
F,o — oH [ 2/3Q)
Cp*Rh—— B—CgFs
F;
Feo— ' F; 12Q@
F, 2-F
F o—p ' a7 @® 4/50@
o+e . . (0
1 T T T T [ T T T T T T 1 1
-130 -140 -150 -160
/ppm

S11

-140 -150 -160

-130

/ppm



Figure S12. 2-F + 2-H (crude), stacked F and “F{'H} NMR, CsDs, 564.8 MHz, 298 K.
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Figure S13. 2-F + 2-H (crude and recrystallized), F{'H} NMR, CsDs, 564.8 MHz, 298 K.
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Figure S14. 2-F + 2-H, "B{'H} NMR, CsDs¢, 128.3 MHz, 298 K (*unknown impurity at ds = 0.12
ppm).
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Figure S15. 2-F + 2-H, ®C{'H} NMR, CsDs, 125.8 MHz, 298 K.
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Figure S16. 2-H, °F{'H} NMR, CsDs, 564.8 MHz, 298 K comparing the product profile at -78 °C
(which gives >99% 2-F) (bottom) and the room-temperature recrystallized mixture that contains
a 1:1 mixture of 2-F and 2-H (top). Conclusion: reaction at -78 °C gives 2-F exclusively.
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Figure S17. 2-F, °F{'H} NMR, CeDs, 564.8 MHz, 298 K produced from reaction of [Cp*Rh(NBD)]
and HB(CsFs)2 at -78 °C (which gives >99% 2-F).

ANMANTTNTINONN=—TNNONONTNOON N @MN*fHMP\NmMGﬂNIﬂ@MOIA?QOONﬂ)c’\HOMNchoVMI\LDMHI\P\OvP\!PmO!PmO’Sm@IhQOmHwMHM
SON=OLONN=HINN=NNMOVVINONOITNNON - M =4 Or=TOWMNRONOL=MMON=—ONNONIMTOLROTINMNNLONM
2MOO=NMIN=N N T ON WD T OMNOLNON D000 0 —uhl\v—lf\LDW@VIAOlhMvwNEDONlcf\l-1MMvIn—I\DwwmmIl“DNO‘DOQNMQC?I\NMQOVQOMOMI\MQMN
NNNMMT I T NOOMOONA=NINNG ML N L LINNNNORNNNROOHRQH—=HNNM LN 0= TONNMINONRN—HHANNNT, T OOANN TR ONMMINN
r‘:‘:; = = O OF = NN ) DA S A
e

T T

[ A e B e B A B B i

CETIST B S

<t = - 0] o) 00|
~ = ) = ] [~
i) =] | N < | o]
(ol =
T T T T T T T T T T T T T T T T T T
- 130 - 140 - 150 - 160 [ppm]

Figure S18. 2-F, 'H NMR, CeDs, 400 MHz, 298 K produced from reaction of [Cp*Rh(NBD)] and
HB(CsFs)2 at -78 °C (which gives >99% 2-F).
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Figure S19. 3, '"H NMR, CsDs, 400 MHz, 298 K.
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Figure S21. 3, "B{'H} NMR, CsDs, 128.3 MHz, 298 K. Signal at 68 = 0 is borosilicate glass.
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Figure 523 Reaction of ex0-3 with 10 mol% [Cp*Rh(NBD)], “F{'H} NMR, CsDs, 564.8 MHz, 298
K.
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Figure S24. Stacked plot of 'H (CsDs, 564.8 MHz, 298 K) (top) and 2H NMR (CsHs, 91.7 MHz, 298
K) (bottom), comparing the product profile obtained from reaction of [Cp*Rh(NBD)] with
HB(CeFs)2 (*H NMR) or DB(CsFs)2 ((H NMR). Conclusion: the 2H is not localized in the ArH group,
but rather in the NBD(CH) fragment.
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Figure §25. Stacked plot (expansion of Figure §24) of 'H (CsDs, 564.8 MHz, 298 K) (top) and 2H
NMR (CsHs, 91.7 MHz, 298 K) (bottom), comparing the product profile obtained from reaction of
[Cp*Rh(NBD)] with HB(CeFs): (‘H NMR) or DB(CeFs). *H NMR). Conclusion: the ?H is not
localized in the ArH group, but rather in the NBD(CH) fragment.
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Figure 526. “F{'H} NMR, C¢Ds, 564.8 MHz, 298 K comparing the product profile where 1 equiv.
B(CsFs)s was added at 25 °C (which gives >99% 2-F) (bottom) and the room-temperature
recrystallized mixture that contains a 1:1 mixture of 2-F and 2-H (top). Conclusion: addition of 1
equiv. B(CeFs)s supresses 2-H formation.
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4. Mass Spectrometry:

Figure S27. 2-F + 2-H, Mass Spectrometry - APCI (expanded) for 2-H m/z = 638.0890 and 2-F m/z

= 656.0795.
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Figure S28. 2-F + 2-H, Mass Spectrometry - APCI top (experimental), bottom (theoretical). calcd.
for 2-H: [C29H24"BFs!®Rh]*: 638.0893; found: 638.0889, m/z [M]* calcd. for 2-F [C2oH23!'BFs!®Rh]*:
656.0799; found: 656.0794.
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Figure S29. 2-F generated from 1 equiv. DB(CeFs)

d) 40%D:60%H theoretical. Signals correspond to [M+H]".
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Figure S30. 2-H generated from 1 equiv. DB(CsFs)2, Mass Spectrometry - APCI top (experimental), bottom (theoretical) showing an
approximately 1:1 ratio of deuterated:non-deuterated sample. a) 100% D theoretical; b) 100% H theoretical; c) 50%D:50%H theoretical;
d) 55%D:45%H theoretical. Signals correspond to [M+H]".
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5. X-Ray Crystallography:

Experimental for 2-H/2-F

Data Collection and Processing. The sample was mounted on a Mitegen polyimide micromount with
a small amount of Paratone N oil. All X-ray measurements were made on a Bruker Kappa Axis Apex2
diffractometer at a temperature of 110 K. The unit cell dimensions were determined from a symmetry
constrained fit of 9723 reflections with 5.86° < 20 < 70.98°. The data collection strategy was a number
of ¢ and w scans which collected data up to 71.93° (20). The frame integration was performed using
SAINT.

* The data were absorption corrected using a multi-scan empirical absorption method. Scaling and an
empirical absorption correction were performed by TWINABS.

Structure Solution and Refinement. The structure was solved by using a dual space methodology
using the SHELXT program.® All non-hydrogen atoms were obtained from the initial solution. The
hydrogen atoms were introduced at idealized positions and were allowed to ride on the parent atom.
Although the sample crystal was twinned, the best refinement was obtained using data from only the
predominant twin fraction. The structure contained a compositional disorder wherein the terminal
atom bound to atom C12 was either F or H. The occupancy for the predominant disorder component
(containing the Fluorine atom) refined to a value of 0.592(5). The structural model was fit to the data
using full matrix least-squares based on F2. The calculated structure factors included corrections for
anomalous dispersion from the usual tabulation. The structure was refined using the SHELXL
program from the SHELX suite of crystallographic software.” Graphic plots were produced using the
Mercury program.® Additional information and other relevant literature references can be found in
the reference section of this website (http://xray.chem.uwo.ca).

Routine checkCIF and structure factor analyses were performed using Platon. ° CCDC
2494566 contains the supplementary crystallographic data for this paper. These data can be obtained
free of charge from  The  Cambridge  Crystallographic = Data  Centre  via
www.ccdc.cam.ac.uk/data_request/cif.

S24


http://xray.chem.uwo.ca/
http://www.ccdc.cam.ac.uk/data_request/cif

Figure S31. ORTEP drawing of 2-H/2-F showing naming and numbering scheme. Ellipsoids
are at the 50% probability level and hydrogen atoms were omitted for clarity.

Figure S32. ORTEP drawing of 2-H/2-F. Ellipsoids are at the 50% probability level and
hydrogen atoms were omitted for clarity
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Table S1. Summary of Crystal Data for 2-H/2-F.

Formula

Formula Weight (g/mol)
Crystal Dimensions (mm )
Crystal Colour and Habit
Crystal System

Space Group
Temperature, K

a, A

b, A

c, A

,°

B,°

v,°

V, A3

Number of reflections to determine final unit cell
Min and Max 20 for cell determination, °

Z

F(000)

o (g/em’)

A, A, (MoKa)

M, (cm™)

Ditfractometer Type

Scan Type(s)

Max 20 for data collection, °

Measured fraction of data

Number of reflections measured

Unique reflections measured

S26

C2oH2341BFs50Rh
648.82

0.249 = 0.128 x 0.075
orange prism
triclinic

P-1

110

8.2646(10)
9.3254(11)
17.716(2)
88.548(5)
77.438(6)
69.538(4)
1246.7(3)

9723

5.86, 70.98

2

649

1.728

0.71073

0.768

Bruker Kappa Axis Apex2
¢ and w scans
71.93

0.997

11524

11524



Rmerge

Number of reflections included in refinement

Cut off Threshold Expression

Structure refined using

Weighting Scheme

Number of parameters in least-squares

Ri

wR2

R: (all data)
wR: (all data)

GOF

Maximum shift/error

Min & Max peak heights on final AF Map (e/A)

Where:

R1=Z | |F0| - |Fc| |/ZFO
wR2 = [ Z( w(

2-F2)?) [ Z(w Fet ) ]

0.0333

11524

I>20(I)

full matrix least-squares using F?

w=1/[0?(F0?)+(0.0293P)?] where
P=(Fo*2Fc?)/3

367

0.0333
0.0653
0.0445
0.0679

0.958

0.001

-0.550, 1.184

GOF =[ Z(w( Fs* - F2)?) / (No. of reflns. - No. of params. ) ]*

Table S2. Atomic Coordinates for for 2-H/2-F.

Atom
Rh1
B1

C1
C2
C3
C4
C5
Cé6

X
0.24071(2)
0.3992(2)
0.29480(18)
0.1686(2)
0.2907(2)
0.3473(2)
0.25657(19)
0.0808(2)

y
0.78870(2)

0.70028(16)
0.87280(15)
1.00339(15)
1.07958(17)
1.16152(16)
1.11967(15)
1.12493(16)

Z

0.22040(2)
0.31341(8)
0.32587(7)
0.38326(8)
0.40813(9)
0.33479(9)
0.27486(8)
0.32925(9)

S27

Ulsofequiv
0.01081(3)
0.0125(2)
0.0127(2)
0.0163(2)
0.0207(3)
0.0196(3)
0.0160(2)
0.0181(3)



C7
C8
C9
C10
C11
C12
C12'
C13
F9
F10
F11
F12
Cl14
C15
Cl16
C17
C18
C19
F15
F16
F17
F18
F19
C20
C21
C22
C23
C24
C25

0.34642(18)
0.48559(18)
0.5821(2)
0.7084(2)
0.7379(2)
0.6450(2)
0.6450(2)
0.52113(18)
0.54938(15)
0.80531(16)
0.86050(16)
0.6631(2)
0.39171(18)
0.24061(19)
0.2338(2)
0.3799(2)
0.5322(2)
0.53554(19)
0.09199(12)
0.08861(13)
0.37456(14)
0.67559(14)
0.69234(13)
0.06441(19)
-0.0374(2)
0.0137(2)
0.1514(2)
0.1841(2)
0.0401(2)

0.94869(14)
0.84170(15)
0.86620(17)
0.74584(19)
0.59394(18)
0.56519(16)
0.56519(16)
0.68702(15)
1.00962(11)
0.76584(13)
0.47886(13)
0.41897(17)
0.57233(15)
0.59260(15)
0.49465(16)
0.36533(16)
0.33838(15)
0.44231(15)
0.71399(10)
0.52579(11)
0.26955(11)
0.21459(11)
0.41360(11)
0.65927(16)
0.81928(17)
0.89806(18)
0.7872(2)

0.63868(17)
0.53509(18)

0.25870(7)
0.20270(7)
0.12962(8)
0.08510(9)
0.10954(9)
0.17771(9)
0.17771(9)
0.23055(7)
0.10600(6)
0.01708(6)
0.06135(6)
0.19095(9)
0.37356(7)
0.43224(7)
0.49200(7)
0.49363(8)
0.43660(8)
0.37910(8)
0.43397(5)
0.54930(5)
0.55078(5)
0.43787(6)
0.32914(6)
0.21872(8)
0.23268(9)
0.16546(9)
0.11211(8)
0.14514(8)
0.26991(9)

528

0.0130(2)
0.0135(2)
0.0186(3)
0.0229(3)
0.0229(3)
0.0189(3)
0.0189(3)
0.0133(2)
0.0278(2)
0.0348(3)
0.0363(3)
0.0239(5)
0.0126(2)
0.0140(2)
0.0156(2)
0.0162(2)
0.0161(2)
0.0146(2)
0.01954(17)
0.02204(18)
0.02286(19)
0.0250(2)
0.0253(2)
0.0146(2)
0.0174(2)
0.0221(3)
0.0232(3)
0.0184(3)
0.0226(3)



C26
C27
C28
C29
H2
H3A
H3B
H4A
H4B
H5
H6A
H6B
H12'
H25A
H25B
H25C
H26A
H26B
H26C
H27A
H27B
H27C
H28A
H28B
H28C
H29A
H29B
H29C

-0.1840(2)
-0.0725(3)
0.2460(4)
0.3127(3)
0.085950
0.225437
0.395068
0.304758
0.477707
0.246802
0.005292
0.012850
0.662848
-0.036356
-0.014907
0.155633
-0.286794
-0.217449
-0.143568
-0.170223
0.014947
-0.118458
0.200186
0.373164
0.226285
0.255289
0.351198
0.415804

0.8868(2)
1.0649(2)
0.8134(3)
0.4888(2)
0.975756
1.154174
1.001545
1.273824
1.122990
1.183580
1.092143
1.226652
0.462054
0.490390
0.578073
0.455389
0.860026
0.998573
0.845874
1.078089
1.102001
1.123375
0.778683
0.755633
0.922907
0.446223
0.417055
0.505233

0.30265(11)
0.15275(13)
0.03345(10)
0.10632(11)
0.426255
0.452768
0.422135
0.345509
0.316188
0.228727
0.302379
0.356419
0.190491
0.251483
0.323089
0.268721
0.299036
0.305131
0.349453
0.127142
0.120059
0.202773
-0.006429
0.026156
0.029285
0.074504
0.145722
0.073347

S29

0.0277(3)
0.0386(5)
0.0424(6)
0.0302(4)
0.020
0.025
0.025
0.023
0.023
0.019
0.022
0.022
0.023
0.034
0.034
0.034
0.042
0.042
0.042
0.058
0.058
0.058
0.064
0.064
0.064
0.045
0.045
0.045



Table S3. Anisotropic Displacement Parameters for for 2-H/2-F.

Atom u!!

Rh1  0.01271(5)
B1 0.0120(6)
C1 0.0118(6)
C2 0.0165(6)
C3 0.0227(7)
C4 0.0187(7)
C5 0.0161(6)
Cé6 0.0152(6)
c7 0.0132(6)
C8 0.0137(6)
C9 0.0202(7)
C10  0.0215(7)
C11  0.0203(7)
Cl12  0.0188(7)
C12'  0.0188(7)
C13  0.0126(6)
F9 0.0332(6)
F10 0.0351(6)
F11 0.0345(6)
F12 0.0291(10)
C14  0.0133(6)
C15  0.0140(6)
Cl6  0.0168(6)
C17  0.0229(7)
C18  0.0180(6)
C19  0.0128(6)

2
0.01016(4)
0.0127(6)
0.0128(5)
0.0133(5)
0.0173(6)
0.0141(6)
0.0110(5)
0.0137(5)
0.0114(5)
0.0127(5)
0.0175(6)
0.0270(7)
0.0211(7)
0.0140(6)
0.0140(6)
0.0125(5)
0.0218(4)
0.0368(6)
0.0279(5)
0.0114(7)
0.0131(5)
0.0145(5)
0.0200(6)
0.0161(6)
0.0120(5)
0.0147(5)

o
0.01000(4)
0.0120(6)
0.0131(5)
0.0158(6)
0.0216(6)
0.0265(7)
0.0211(6)
0.0236(6)
0.0146(5)
0.0142(5)
0.0187(6)
0.0173(6)
0.0201(6)
0.0197(6)
0.0197(6)
0.0136(5)
0.0275(5)
0.0240(5)
0.0287(5)
0.0244(8)
0.0123(5)
0.0131(5)
0.0118(5)
0.0150(5)
0.0197(6)
0.0165(6)

S30

o
-0.00407(3)
-0.0032(5)
-0.0034(4)
-0.0017(5)
-0.0031(5)
-0.0038(5)
-0.0032(5)
-0.0014(5)
-0.0041(4)
-0.0056(4)
-0.0094(5)
-0.0100(6)
-0.0038(6)
-0.0037(5)
-0.0037(5)
-0.0031(4)
-0.0131(4)
-0.0143(5)
-0.0017(5)
-0.0010(6)
-0.0043(4)
-0.0034(5)
-0.0085(5)
-0.0106(5)
-0.0039(5)
-0.0044(5)

o
-0.00351(3)
-0.0031(5)
-0.0036(4)
-0.0022(5)
-0.0094(6)
-0.0093(6)
-0.0069(5)
-0.0065(5)
-0.0039(4)
-0.0020(4)
-0.0013(5)
0.0042(5)
0.0050(6)
0.0012(5)
0.0012(5)
-0.0024(4)
0.0001(4)
0.0138(4)
0.0151(5)
-0.0019(6)
-0.0053(4)
-0.0052(4)
-0.0038(5)
-0.0100(5)
-0.0095(5)
-0.0047(5)

o
0.00168(3)
0.0006(4)
-0.0009(4)
-0.0033(4)
-0.0039(5)
-0.0019(5)
0.0004(4)
-0.0022(5)
0.0006(4)
0.0005(4)
0.0043(5)
0.0013(5)
-0.0052(5)
-0.0019(5)
-0.0019(5)
0.0002(4)
0.0087(4)
0.0015(4)
-0.0080(4)
-0.0015(5)
0.0013(4)
0.0021(4)
0.0021(4)
0.0056(4)
0.0038(4)
0.0024(4)



F15
F16
F17
F18
F19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29

0.0136(4)
0.0218(5)
0.0317(5)
0.0225(5)
0.0129(4)
0.0158(6)
0.0140(6)
0.0289(8)
0.0361(9)
0.0246(7)
0.0282(8)
0.0128(7)
0.0521(13)
0.0733(16)
0.0325(9)

0.0203(4)
0.0298(5)
0.0227(4)
0.0167(4)
0.0245(4)
0.0160(5)
0.0178(6)
0.0197(6)
0.0308(8)
0.0201(6)
0.0227(7)
0.0306(8)
0.0219(8)
0.0599(13)
0.0294(8)

0.0185(4)
0.0134(4)
0.0205(4)
0.0320(5)
0.0300(5)
0.0150(5)
0.0221(6)
0.0267(7)
0.0146(6)
0.0138(5)
0.0234(7)
0.0366(9)
0.0559(12)
0.0154(7)
0.0275(8)

Table S4. Bond Lengths for for 2-H/2-F.

Rh1-C7
Rh1-C21
Rh1-C24
Rh1-C20
Rh1-C23
Rh1-C8
Rh1-C22
Rh1-C13
Rh1-C1
Rh1-B1
B1-C1

2.1611(13)
2.1769(15)
2.1858(14)
2.1980(13)
2.2025(15)
2.2032(13)
2.2167(16)
2.2223(14)
2.2337(13)
2.2861(15)
1.532(2)
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0.0000(3)
-0.0102(4)
-0.0139(4)
-0.0002(4)
0.0002(4)
-0.0080(5)
-0.0046(5)
-0.0120(6)
-0.0225(7)
-0.0119(6)
-0.0155(6)
-0.0034(6)
-0.0137(8)
-0.0488(13)
-0.0126(7)

C12-C13
C12'-C13
C12'-H12'
C14-C19
C14-C15
C15-F15
C15-C16
Cl6-F16
Cl6-C17
C17-F17
C17-C18

-0.0013(3)
0.0000(3)
-0.0126(4)
-0.0104(4)
0.0002(4)
-0.0055(5)
-0.0092(5)
-0.0200(6)
-0.0129(6)
-0.0048(5)
-0.0095(6)
-0.0051(6)
-0.0413(11)
-0.0126(8)
0.0000(7)

1.4281(19)
1.4281(19)

0.9500
1.389(2)

1.3986(19)
1.3433(17)
1.3855(18)
1.3404(16)

1.381(2)

1.3368(15)

1.381(2)

0.0040(3)
0.0036(3)
0.0121(3)
0.0088(3)
0.0092(4)
0.0028(4)
0.0012(5)
0.0098(5)
0.0087(5)
0.0000(5)
0.0103(5)
-0.0085(7)
0.0180(8)
0.0123(7)
-0.0132(6)



B1-C13
B1-C14
C1-C7
C1-C2
C2-Co6
C2-C3
C2-H2
C3-C4
C3-H3A
C3-H3B
C4-C5
C4-H4A
C4-H4B
C5-C7
C5-Co6
C5-H5
C6-H6A
Cé6-HoeB
C7-C8
C8-C9
C8-C13
C9-F9
C9-C10
C10-F10
C10-C11
C11-F11
C11-C12'
C11-C12
C12-F12

1.5697(19)
1.5879(18)
1.4306(18)
1.5225(19)
1.549(2)
1.558(2)
1.0000
1.558(2)
0.9900
0.9900
1.554(2)
0.9900
0.9900
1.5095(19)
1.544(2)
1.0000
0.9900
0.9900
1.4332(19)
1.4242(18)
1.4632(18)
1.3434(17)
1.356(2)
1.3422(17)
1.424(2)
1.3480(18)
1.358(2)
1.358(2)
1.339(2)
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C18-F18
C18-C19
C19-F19
C20-C24
C20-C21
C20-C25
C21-C22
C21-C26
C22-C23
C22-C27
C23-C24
C23-C28
C24-C29
C25-H25A
C25-H25B
C25-H25C
C26-H26A
C26-H26B
C26-H26C
C27-H27A
C27-H27B
C27-H27C
C28-H28A
C28-H28B
C28-H28C
C29-H29A
C29-H29B
C29-H29C

1.3383(17)
1.3908(18)
1.3434(17)
1.426(2)
1.430(2)
1.4947(18)
1.446(2)
1.501(2)
1.420(3)
1.502(2)
1.449(2)
1.502(2)
1.500(2)
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800



Table S5. Bond Angles for 2-H/2-F.

C7-Rh1-C21
C7-Rh1-C24
C21-Rh1-C24
C7-Rh1-C20
C21-Rh1-C20
C24-Rh1-C20
C7-Rh1-C23
C21-Rh1-C23
C24-Rh1-C23
C20-Rh1-C23
C7-Rh1-C8
C21-Rh1-C8
C24-Rh1-C8
C20-Rh1-C8
C23-Rh1-C8
C7-Rh1-C22
C21-Rh1-C22
C24-Rh1-C22
C20-Rh1-C22
C23-Rh1-C22
C8-Rh1-C22
C7-Rh1-C13
C21-Rh1-C13
C24-Rh1-C13
C20-Rh1-C13
C23-Rh1-C13
C8-Rh1-C13

127.00(5)
161.11(5)
63.93(6)
160.06(5)
38.17(5)
37.96(5)
127.59(5)
63.71(6)
38.56(6)
63.76(5)
38.33(5)
160.51(5)
126.31(5)
159.86(5)
112.48(5)
113.71(5)
38.41(6)
63.75(6)
63.77(5)
37.48(7)
126.59(5)
65.15(5)
160.12(5)
109.74(6)
125.11(5)
124.32(6)
38.61(5)
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F10-C10-C9
F10-C10-C11
C9-C10-C11
F11-C11-C12
F11-C11-C12
F11-C11-C10
C12'-C11-C10
C12-C11-C10
F12-C12-C11
F12-C12-C13
C11-C12-C13
C11-C12'-C13
C11-C12'-H12'
C13-C12'-H12'
C12'-C13-C8
C12-C13-C8
C12'-C13-B1
C12-C13-B1
C8-C13-B1
C12'-C13-Rh1
C12-C13-Rh1
C8-C13-Rh1
B1-C13-Rh1
C19-C14-C15
C19-C14-B1
C15-C14-B1
F15-C15-C16

121.48(14)
118.60(14)
119.92(13)
121.14(14)
121.14(14)
117.07(13)
121.79(14)
121.79(14)
117.61(14)
120.91(13)
121.27(13)
121.27(13)
119.4
119.4
115.96(11)
115.96(11)
136.10(12)
136.10(12)
107.86(11)
120.44(11)
120.44(11)
69.99(8)
71.82(8)
114.09(11)
124.41(12)
121.09(12)
116.02(12)



C22-Rh1-C13
C7-Rh1-C1
C21-Rh1-C1
C24-Rh1-C1
C20-Rh1-C1
C23-Rh1-C1
C8-Rh1-C1
C22-Rh1-C1
C13-Rh1-C1
C7-Rh1-B1
C21-Rh1-B1
C24-Rh1-B1
C20-Rh1-B1
C23-Rh1-B1
C8-Rh1-B1
C22-Rh1-B1
C13-Rh1-B1
C1-Rh1-B1
C1-B1-C13
C1-B1-C14
C13-B1-C14
C1-B1-Rh1
C13-B1-Rh1
C14-B1-Rh1
C7-C1-C2
C7-C1-B1
C2-C1-B1
C7-C1-Rh1
C2-C1-Rh1

158.33(6)
37.95(5)
112.72(5)
158.98(5)
126.13(5)
161.16(6)
64.12(5)
127.89(6)
65.81(5)
65.88(5)
124.92(5)
123.26(6)
109.48(5)
158.43(6)
66.19(5)
160.66(6)
40.72(5)
39.60(5)
102.62(10)
127.24(12)
130.00(12)
68.36(7)
67.46(7)
130.11(10)
103.91(11)
109.55(11)
146.17(12)
68.28(7)
126.98(10)
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F15-C15-C14
Cl6-C15-C14
F16-C16-C17
F16-C16-C15
C17-C16-C15
F17-C17-C18
F17-C17-C16
C18-C17-C16
F18-C18-C17
F18-C18-C19
C17-C18-C19
F19-C19-C14
F19-C19-C18
C14-C19-C18
C24-C20-C21
C24-C20-C25
C21-C20-C25
C24-C20-Rh1
C21-C20-Rh1
C25-C20-Rh1
C20-C21-C22
C20-C21-C26
C22-C21-C26
C20-C21-Rh1
C22-C21-Rh1
C26-C21-Rh1
C23-C22-C21
C23-C22-C27
C21-C22-C27

120.31(11)
123.66(13)
119.55(12)
120.76(13)
119.67(13)
120.60(13)
120.20(13)
119.18(12)
119.93(12)
120.71(13)
119.34(13)
120.35(11)
115.59(13)
124.00(13)
107.91(12)
126.23(13)
125.73(13)
70.55(8)

70.12(8)

128.05(10)
108.34(13)
124.20(14)
127.19(15)
71.71(8)

72.29(9)

126.48(11)
107.53(13)
126.57(16)
125.78(17)



B1-C1-Rh1
C1-C2-Cé
C1-C2-C3
C6-C2-C3
C1-C2-H2
C6-C2-H2
C3-C2-H2
C4-C3-C2
C4-C3-H3A
C2-C3-H3A
C4-C3-H3B
C2-C3-H3B
H3A-C3-H3B
C5-C4-C3
C5-C4-H4A
C3-C4-H4A
C5-C4-H4B
C3-C4-H4B
H4A-C4-H4B
C7-C5-Cé
C7-C5-C4
Ce6-C5-C4
C7-C5-H5
C6-C5-H5
C4-C5-H5
C5-C6-C2
C5-C6-H6A
C2-C6-H6A
C5-C6-Ho6B

72.05(8)
102.20(11)
104.31(12)
99.85(11)
116.1
116.1
116.1
103.65(12)
111.0
111.0
111.0
111.0
109.0
103.45(11)
111.1
111.1
111.1
111.1
109.0
99.96(10)
105.00(12)
99.58(12)
116.6
116.6
116.6
95.38(11)
112.7
112.7
112.7
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C23-C22-Rh1
C21-C22-Rh1
C27-C22-Rh1
C22-C23-C24
C22-C23-C28
C24-C23-C28
C22-C23-Rh1
C24-C23-Rh1
C28-C23-Rh1
C20-C24-C23
C20-C24-C29
C23-C24-C29
C20-C24-Rh1
C23-C24-Rh1
C29-C24-Rh1
C20-C25-H25A
C20-C25-H25B
H25A-C25-H25B
C20-C25-H25C
H25A-C25-H25C
H25B-C25-H25C
C21-C26-H26A
C21-C26-H26B
H26A-C26-H26B
C21-C26-H26C
H26A-C26-H26C
H26B-C26-H26C
C22-C27-H27A
C22-C27-H27B

70.72(9)
69.31(8)
128.37(12)
108.26(12)
127.36(17)
124.35(18)
71.80(9)
70.10(8)
125.32(13)
107.89(13)
126.17(13)
125.82(14)
71.48(8)
71.35(8)
125.78(12)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5



C2-C6-Ho6B
H6A-C6-H6B
C1-C7-C8
C1-C7-C5
C8-C7-C5
C1-C7-Rh1
C8-C7-Rh1
C5-C7-Rh1
C9-C8-C7
C9-C8-C13
C7-C8-C13
C9-C8-Rh1
C7-C8-Rh1
C13-C8-Rh1
F9-C9-C10
F9-C9-C8
C10-C9-C8

112.7
110.2
110.66(11)
108.94(11)
139.47(12)
73.78(7)
72.43(7)
127.97(10)
130.25(12)
120.57(12)
109.18(11)
124.80(11)
69.24(7)
71.40(7)
120.44(12)
119.43(13)
120.12(13)
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H27A-C27-H27B
C22-C27-H27C
H27A-C27-H27C
H27B-C27-H27C
C23-C28-H28A
C23-C28-H28B
H28A-C28-H28B
C23-C28-H28C
H28A-C28-H28C
H28B-C28-H28C
C24-C29-H29A
C24-C29-H29B
H29A-C29-H29B
C24-C29-H29C
H29A-C29-H29C
H29B-C29-H29C

109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5



6. Computational Details:

6.1 Methodology:

Calculations were performed using version 6.0.1 of the ORCA package. ! All geometry
optimizations and frequency calculations were performed at the r2SCAN-3c level of theory, which
includes a basis set of triple-zeta quality and empirical corrections to account for dispersion.!!
Frequency calculations were performed to confirm the nature of each stationary point, with
transition states having one imaginary frequency and minima having none.

Electronic energies were refined using single point calculations with the TIGHTSCF keyword at
the r’SCANO0-D4/ma-Def2-QZVP/SMD(toluene) level of theory.!? Free energies are calculated
from the electronic energy at the higher level of theory plus the correction to free energy from the
lower level of theory, plus a correction (+ 1.89 kcal/mol) to account for a standard state of 1 mol
L+ rather than 1 atm.® i.e.:

G (in keal/mol) = E(2SCAN0/ma-Def2-QZVP/SMD(toluene)) + Georr(12SCAN-3c) + 1.89

In each Figure and Scheme, the free energy at r2SCAN-3c is also given, in parentheses, for
comparison.

All transition states were checked using IRC calculations to ensure that these linked the
anticipated intermediates before and after the transition state.

NBO calculations were carried out using NBO7.1* QTAIM calculations were carried out using
AIMAIL®

6.2 Reaction Profile:

The most reasonable reaction mechanism is displayed in Figures S33 and $34. However, we note
concerns regarding the very large energy differences between E and TS-K-L, due to the stability
of the former and the need for reductive elimination from rhodium(Ill) in the latter.
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Figure S33. Proposed reaction mechanism (part 1 of 2).
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Figure S34. Proposed reaction mechanism (part 2 of 2)
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6.3 Kinetic isotope effects:

Kineticisotope effects were obtained by recalculating the vibrational frequencies of key structures
with the atomic mass of the relevant proton set to 2.0141. Figure S35 displays the overlaid free
energy profiles for the do and di structures from E to J. Kinetic isotope effects are calculated for
TS-E-F, TS-F-H, and TS-I-]. No equilibrium isotope effects (EIE) were identified; the energy

differences between the do and di intermediates are 1.7-1.8 kcal mol in each case.

(barriers in kcal/mol) (11 :1)
Step do d, KIE (;.g)
E > TS-E-F 18.5 19.1 29 do = black '
F>TS-F-H 0.1 0.4 1.6 d, = orange

28.7 29.6

5.6
TS-I-J (3.2)

J
-6.4
(-7.0)
anti-TS-E-F
F Cp*
F rp D-F
H‘\\ 2
F .
P C//
F CeFs
J

Figure S35. Kinetic isotope effect modelling.

540



6.4 Alternative reaction profiles:

A series of alternative mechanisms were also modelled.

Rhodium-catalyzed hydroboration was considered, but this is unfeasible; attempts to locate
[Rh(Cp*)(H)(B(CsFs)2)] gave an n*-complex (Gre = 27.0 kcal mol?). An unfeasible TS for C-F
activation at HB(CeF5)2 was also ruled out (AGt = 51.1 kcal mol).

As shown in Figure 5§36, Complex G can progress to T via C-H oxidative addition. T is unable
to undergo a further C-H insertion (TS-T-U is prohibitively high in energy). Dihydrogen
reductive elimination via TS-T-V is facile and exergonic. Complex V might then eliminate HF
via TS-V-W but dissociation of dihydrogen to give X is much more favourable, and X can then
progress to the very thermodynamically stable complex Y. Similarly, HF elimination from Y
(via TS-Y-Z) is feasible, but less favourable than C-H insertion via TS-Y-AA to give AA.
Figure S37 shows a series of potential pathways from AA. Migratory insertion is facile, and
can occur with either regioselectivity. TS-AA-AB leads to the isomer where the rhodium sits
furthest from boron (AB). Binding dihydrogen, which was released from V as discussed above,
gives AC which can then progress via hydrogenolysis of the Rh-C bond — without a rhodium
dihydride intermediate — to AD. Formally, this would then need to eliminate HF to generate
the product.

Formation of the alternative regioisomers of the migratory insertion product without (AE) and
with bound hydrogen (AF) is somewhat more favourable. If AF then undergoes HF
elimination in concert with H-H activation, this would generate AG. After loss of HF — which
would most likely be irreversible under the reaction conditions in a borosilicate glass vessel —
to give AH, reductive elimination would give Al, from which rhodium can move across to
form R and then ultimately S (see Figure S34, above).

However, the most favorable process from AF is TS-AF-A]J — hydrogenolysis of the Rh-C bond
— which is followed immediately by migratory insertion to give AJ, which is a very stable
structure, and which renders the process via TS-AF-A] irreversible. Despite repeated attempts

and careful analysis of the IRC for this TS, a structure like AD could not be located.
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Figure S36. Alternative pathways explored in search of a reaction mechanism (part 1 of 2).
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Figure S37. Alternative pathways explored in search of a reaction mechanism (part 2 of 2).
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6.5 Table of energies:

Table S6. Table of Energies. Rows in blue refer to structures on the proposed reaction mechanism (Figures S33 and §34). Rows in
yellow refer to structures that were obtained as a result of exploring alternative reaction mechanisms (Figures S36 and S37). The
corresponding imaginary frequency is tabulated for all transition states.

r*'SCAN-3c OPT FREQ r’SCANO-D4/ma-Def2-QZVP/SMD(toluene) SP TIGHTSCF
v Hartrees kcal/mol Hartrees kcal/mol

Structure (cm?) | G Georr G Grel G G G' G'rel
(Cp*)Rh(nbd) -771.816930 0.305100 -484322.4 0.0 -772.103486 -771.798386 -484310.8 -484308.9 0.0
HB(CeFs)2 -1480.942622 0.066238 -929305.5 -1480.915342 -1480.849104 -929246.8 -929245.0

nbd -271.305563 0.099809 -170246.8 -271.415953 -271.316144 -170253.5 -170251.6
(Cp*)Rh(HB(C6Fs).) -1981.413027 0.274043 -1243355.4 25.7 -1981.562392 -1981.288349 -1243277.2 -1243275.3 27.0
A -2252.744878 0.399742 -1413618.8 9.2 -2253.031747 -2252.632006 -1413547.9 -1413546.0 7.8
B -2252.753131 0.402311 -1413623.9 4.0 -2253.038114 -2252.635803 -1413550.3 -1413548.4 5.4
TS-B-C 231i -2252.720663 0.400099 -1413603.6 24.4 -2252.998700 -2252.598601 -1413527.0 -1413525.1 28.8
C -2252.771173 0.399212 -1413635.3 -7.3 -2253.059386 -2252.660175 -1413565.6 -1413563.7 -9.8
D -2252.797155 0.403358 -1413651.6 -23.6 -2253.089692 -2252.686334 -1413582.0 -1413580.1 -26.3
E -2252.803033 0.400949 -1413655.2 -27.3 -2253.096163 -2252.695214 -1413587.6 -1413585.7 -31.8
TS-E-F 444i -2252.773559 0.398229 -1413636.8 -8.8 -2253.055307 -2252.657079 -1413563.7 -1413561.8 -7.9
anti-TS-E-F 350i -2252.766262 0.397825 -1413632.2 -4.2 -2253.051890 -2252.654066 -1413561.8 -1413559.9 -6.0
F -2252.774533 0.398906 -1413637.4 -94 -2253.054599 -2252.655693 -1413562.8 -1413560.9 -7.0
TS-F-G 121i -2252.741684 0.398849 -1413616.7 11.2 -2253.022364 -2252.623515 -1413542.6 -1413540.7 13.2
G -2252.798913 0.399270 -1413652.7 -24.7 -2253.088329 -2252.689059 -1413583.7 -1413581.8 -28.0
TS-F-H 441i -2252.774388 0.397945 -1413637.3 -9.3 -2253.054613 -2252.656668 -1413563.4 -1413561.5 -7.6
H -2252.785839 0.401794 -1413644.5 -16.5 -2253.074942 -2252.673148 -1413573.7 -1413571.9 -18.0
| -2252.790394 0.402487 -1413647.3 -19.4 -2253.079576 -2252.677089 -1413576.2 -1413574.3 -20.5
TS-I-) 660i -2252.744729 0.397012 -1413618.7 9.3 -2253.025953 -2252.628942 -1413546.0 -1413544.1 9.7
J -2252.754486 0.398934 -1413624.8 3.2 -2253.034421 -2252.635488 -1413550.1 -1413548.2 5.6
hydrogen fluoride -100.451321 -0.007035 -63034.2 -100.444734 -100.451769 -63034.4 -63032.5
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v Hartrees kcal/mol Hartrees kcal/mol
Structure (cm?) G Georr G Grel E G G G' G'rel
K -2152.309650 0.388687 -1350594.7 -0.9 -2152.585418 -2152.196731 -1350523.8 -1350521.9 -0.6
TS-K-L 412i -2152.262744 0.386943 -1350565.3 28.5 -2152.533793 -2152.146850 -1350492.5 -1350490.6 30.7
L -2152.318872 0.388599 -1350600.5 -6.7 -2152.597212 -2152.208614 -1350531.3 -1350529.4 -8.1
TS-L.-M 216i -2152.302442 0.388034 -1350590.2 3.6 -2152.575820 -2152.187786 -1350518.2 -1350516.3 5.0
M -2152.349956 0.390565 -1350620.0 -26.2 -2152.630019 -2152.239454 -1350550.6 -1350548.8 -27.4
TS-M-N 412i -2152.314768 0.386112 -1350597.9 -4.1 -2152.589809 -2152.203697 -1350528.2 -1350526.3 -5.0
N -2152.321941 0.386865 -1350602.4 -8.6 -2152.597419 -2152.210555 -1350532.5 -1350530.6 -9.3
TS-N-O 679i -2152.308221 0.383700 -1350593.8 0.0 -2152.577720 -2152.194020 -1350522.1 -1350520.2 1.1
(0] -2152.315151 0.384650 -1350598.1 -4.3 -2152.582531 -2152.197881 -1350524.6 -1350522.7 -1.4
P -2152.291391 0.383956 -1350583.2 10.6 -2152.558356 -2152.174400 -1350509.8 -1350507.9 13.4
TS-P-Q1 640i -2152.285324 0.383593 -1350579.4 14.4 -2152.556613 -2152.173019 -1350509.0 -1350507.1 14.2
Q1 -2152.296771 0.386874 -1350586.6 7.2 -2152.574950 -2152.188076 -1350518.4 -1350516.5 4.8
TS-P-Q2 653i -2152.286096 0.383244 -1350579.9 13.9 -2152.556815 -2152.173571 -1350509.3 -1350507.4 13.9
Q2 -2152.294507 0.386246 -1350585.2 8.6 -2152.571528 -2152.185282 -1350516.7 -1350514.8 6.6
TS-Q1-R 786i -2152.269607 0.385249 -1350569.6 24.2 -2152.545420 -2152.160170 -1350500.9 -1350499.0 22.3
TS-Q2-R 795i -2152.272674 0.384539 -1350571.5 22.3 -2152.544846 -2152.160307 -1350501.0 -1350499.1 22.2
R -2152.405142 0.393817 -1350654.6 -60.8 -2152.693611 -2152.299794 -1350588.5 -1350586.6 -65.3
S -2152.415314 0.393440 -1350661.0 -67.2 -2152.705008 -2152.311568 -1350595.9 -1350594.0 -72.7
TS-G-T 98i -2252.787792 0.396332 -1413645.7 -17.7 -2253.067485 -2252.671153 -1413572.5 -1413570.6 -16.7
T -2252.788727 0.395427 -1413646.3 -18.3 -2253.066953 -2252.671526 -1413572.7 -1413570.8 -17.0
TS-T-U 710i -2252.706484 0.390130 -1413594.7 33.3 -2252.965290 -2252.575160 -1413512.3 -1413510.4 43.5
TS-T-V 585i -2252.788209 0.395547 -1413645.9 -18.0 -2253.067897 -2252.672351 -1413573.2 -1413571.4 -17.5
Vv -2252.790795 0.397539 -1413647.6 -19.6 -2253.076459 -2252.678920 -1413577.4 -1413575.5 -21.6
TS-V-W 137i -2252.759371 0.396567 -1413627.8 0.1 -2253.040947 -2252.644379 -1413555.7 -1413553.8 0.1
w -2252.762965 0.395243 -1413630.1 -2.1 -2253.043926 -2252.648683 -1413558.4 -1413556.5 -2.6
X -2251.619811 0.379840 -1412912.8 -19.8 -2251.884542 -2251.504703 -1412840.5 -1412838.6 -18.8
Y -2251.662656 0.380422 -1412939.6 -46.7 -2251.927446 -2251.547024 -1412867.1 -1412865.2 -45.4
TS-Y-Z 637i -2251.621735 0.375965 -1412914.0 -21.0 -2251.875976 -2251.500011 -1412837.6 -1412835.7 -15.9
YA -2251.625892 0.378425 -1412916.6 -23.6 -2251.881904 -2251.503480 -1412839.8 -1412837.9 -18.1

545




v Hartrees kcal/mol Hartrees kcal/mol

Structure (cm?) G G G Grel E G G G' G'rel
TS-Y-AA 302i -2251.647723 0.378280 -1412930.3 -37.3 -2251.910138 -2251.531858 -1412857.6 -1412855.7 -35.9
AA -2251.647268 0.379018 -1412930.0 -37.0 -2251.909673 -2251.530654 -1412856.8 -1412854.9 -35.1
TS-AA-AB 674i -2251.639309 0.378095 -1412925.0 -32.0 -2251.904111 -2251.526015 -1412853.9 -1412852.0 -32.2
AB -2251.642725 0.380219 -1412927.1 -34.2 -2251.910617 -2251.530398 -1412856.7 -1412854.8 -35.0
AC -2252.795601 0.398254 -1413650.6 -22.6 -2253.081650 -2252.683396 -1413580.2 -1413578.3 -24.4
TS-AC-AD 551i -2252.786693 0.397139 -1413645.0 -17.0 -2253.069266 -2252.672127 -1413573.1 -1413571.2 -17.4
AD -2252.810896 0.400481 -1413660.2 -32.2 -2253.101933 -2252.701452 -1413591.5 -1413589.6 -35.8
TS-AA-AE 670i -2251.638664 0.377736 -1412924.6 -31.6 -2251.902449 -2251.524712 -1412853.1 -1412851.2 -31.4
AE -2251.643920 0.379985 -1412927.9 -34.9 -2251.910260 -2251.530275 -1412856.6 -1412854.7 -34.9
AF -2252.806659 0.397748 -1413657.5 -29.6 -2253.090525 -2252.692777 -1413586.1 -1413584.2 -30.3
TS-AF-AG 230i -2252.787903 0.396854 -1413645.8 -17.8 -2253.063287 -2252.666433 -1413569.5 -1413567.6 -13.8
AG -2252.787968 0.399139 -1413645.8 -17.8 -2253.064459 -2252.665319 -1413568.8 -1413566.9 -13.1
AH -2152.345753 0.389683 -1350617.4 -23.5 -2152.618241 -2152.228557 -1350543.8 -1350541.9 -20.6
TS-AH-AI 737i -2152.334953 0.388604 -1350610.6 -16.8 -2152.610181 -2152.221577 -1350539.4 -1350537.5 -16.2
Al -2152.355098 0.390232 -1350623.2 -29.4 -2152.636304 -2152.246071 -1350554.8 -1350552.9 -31.6
TS-AF-A) 597i -2252.795377 0.396338 -1413650.4 -22.5 -2253.076887 -2252.680549 -1413578.4 -1413576.5 -22.6
AJ -2252.840476 0.403019 -1413678.7 -50.8 -2253.136832 -2252.733813 -1413611.8 -1413609.9 -56.1
dihydrogen -1.171278 -0.001896 -735.0 -1.170894 -1.172790 -735.9 -734.0

TS for HB(CsFs). C-F .

activation 233i -1981.380405 0.27188849 -1243335.0 46.2 -1981.521853 -1981.249964 -1243253.1 -1243251.2 51.1
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6.5 Alternative levels of theory

Different levels of theory were benchmarked for TS-B-C vs [Rh(Cp*)(nbd)] plus HB(CsF4)2. These
all give energies within a reasonably narrow range, apart from M06 which gives an unfeasibly

high barrier.
Basis Set Functional [Rh{Cp)(nbd)} HB(CsFs). 15-B-C AG!
E E E

ma-def2-QZVP r2SCANO-D4 -772.103486 -1480.915342  -2252.998700 28.8
ma-def2-QZVP wr2SCAN-D4 -772.260778 -1481.018631  -2253.261183 27.6
ma-def2-QZVP wB97M-V -772.162501 -1481.411983  -2253.558415 26.2
ma-def2-QZVP CAM-B3LYP-D4 -772.146779 -1481.335905  -2253.468508 25.1
ma-def2-QZVP MO06 -772.060257 -1481.112350  -2253.133727 40.6
ma-def2-QZVP PBEO-D4 -771.791050 -1480.295646  -2252.068057 27.9
ma-def2-QZVP TPSS0-D4 -772.540696 -1481.565114  -2254.085726 28.8
ma-def2-QZVP wB97X-D4rev -772.933419 -1482.019153  -2254.933467 28.1
def2-TZVPD r2SCANO-D4 -772.057788 -1480.851208  -2252.890400 27.8
def2-QZVPD r2SCANO-D4 -772.103646 -1480.915531  -2252.999119 28.7
def2-QZVPP r2SCANO-D4 -772.103737 -1480.914790  -2252.998579 28.7
def2-QZVPPD r2SCANO-D4 -772.103956 -1480.915531  -2252.999457 28.7

6.6 XYZ coordinates:

The XYZ coordinates are available:

(1) As a separate supporting information file, from the journal website.
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