

Supplementary Information

Co-N₂P₂ Single-Atom Catalysts Enable Efficient α -Alkylation of Aromatic Ketones.

Natarajan Anbuselvan.^a Selvam Sivaprakash,^a Duraiarasan Sneha,^a Biplab Ghosh,^{b,c} Devarajan Suresh,^{*a} and Arlin Jose Amali.^{*a}

^aDepartment of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India.

^bBeamline Development &Application Section, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.

^cHigh Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India

S. No.	Contents	Page No.
1	Additional Experimental methods	S3
2	Schematic representation of synthesis of Co single atom catalyst trapped on hierarchically porous carbon doped with P and N (Co-N ₂ P ₂)	S7
3	FT-IR spectra of Co(PPh ₃) ₂ Cl ₂ , N-CTP and Co-N ₂ P ₂	S8
4	SEM images of N-CTP and Co-N ₂ P ₂	S8
5	PXRD pattern of Co-N ₂ P ₂	S9
6	ICP-AES result of Co-N ₂ P ₂	S9
7	N ₂ adsorption studies	S10
8	XPS Spectra of Co-N ₂ P ₂	S10
9	K-edge fitting parameters	S11
10	Optimization for the α -alkylation reaction catalyzed by Co-N ₂ P ₂	S12
11	Comparison of catalytic activity of Co-N ₂ P ₂ with previously reported catalysts for α - alkylation	S13
12	Evaluation of Green Chemistry Metrics	S14
13	Mechanistic studies	S15
14	Proposed reaction mechanism for α - alkylation of acetophenone catalyzed by Co-N ₂ P ₂	S16
15	Sheldon's test for Co-N ₂ P ₂ catalyzed α - alkylation of acetophenone	S17
16	Acid leaching and KSCN poisoning experiment	S17
17	Reusability of Co-N ₂ P ₂ catalyzed α - alkylation of acetophenone	S17
18	PXRD pattern of reused Co-N ₂ P ₂ catalyst	S18
19	XPS Co 2p spectrum of reused Co-N ₂ P ₂ catalyst	S18
20	GC chromatogram for Co-N ₂ P ₂ catalyzed α - alkylation of acetophenone	S19
21	GC chromatogram for Co(PPh ₃) ₂ Cl ₂ catalyzed α - alkylation of acetophenone	S19
22	References	S20

Experimental Methods

Materials and reagents

All the chemicals, reagents, and solvents were purchased from commercial suppliers (Sigma Aldrich, Merck, Hi-Media) and used without further purification.

Characterization

The phase composition was investigated using a Powder X-ray diffractometer (XRD, Rigaku, Japan) instrument with K_{β} filter for Cu- K_{α} radiation at $2\theta = 10^{\circ} - 80^{\circ}$ and a scan speed of 5 min. High-resolution transmission electron microscope (HR-TEM) characterization was carried out with a Tecnai G² Spirit microscope operating at 200 kV. Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) analysis was carried out by using SPECTRO (GmbH, Germany) Analytical Instruments at IIT Bombay. The surface analysis was determined by model K-alpha XPS (X-ray Photoelectron Spectrometer) manufactured by Thermo scientific (USA). Co XANES and XAFS spectra were carried out on Co-N₂P₂ sample in fluorescence mode at BL-09 of Indus-2, Raja Ramanna Centre for Advanced Technology (RRCAT), Indore. The Co K-edge energy range were calibrated using Co foil at 7709 eV. For the analysis of the XAFS data, the energy-dependent absorption coefficient $\mu(E)$ has been converted to the energy-dependent absorption function $\chi(E)$ and then to the wave number-dependent absorption coefficient $\chi(k)$. Finally, k^3 weighted $\chi(k)$ spectra were Fourier transformed in R space to generate the $\chi(R)$ versus R spectra regarding the accurate distance from the center of the absorbing atoms. The XANES and XAFS data were analyzed using the FEFF 6.0 code 1 with the help of the Demeter software program. The interatomic distances and number of atoms were calculated by normalizing the backscattering amplitude and phase functions from FEFF to fit the EXAFS data. EXAFS data best fit were obtained to minimize Rfactor in the above process.

Preparation of porous carbon from rice husk

The rice husk was activation carried out by previously reported literature. The first step, Rice husk (5.0 g) and H_3PO_4 (10.0 g) was taken in a beaker and stirred at 12h at room temperature. Then it dried at 100 °C for 24 h. Resultant material subjected to pyrolysis at 550 °C (5 °C/min) for 1 h under N_2 atmosphere. After that, the sample was washed with deionized water until reach the neutral pH, and the H_3PO_4 -activated carbon samples were labeled as AC. In second step, AC (1.0 g) and $K_2C_2O_4$ (3.0 g) at 1:3 mass ratio grounded into fine powder. Then it was pyrolyzed at 800 °C for 1 hour under N_2 atmosphere. The temperature was cooled down to room temperature and washed with water to afford porous carbon (PC).

Synthesis of Covalent Triazine Polymer (CTP)

In a typical method, cyanuric chloride (6.0 mmol, 1.25 g) and melamine (6.0 mmol, 0.76 g) were dissolved in 70 mL of acetonitrile, and stirred at room temperature for 6 h under N_2 atmosphere. Then the solution was transferred into the teflon-lined stainless steel autoclave heated at 200 °C for 24 h and cooled down to room temperature. The dark red colour precipitate was separated by centrifugation, washed with excess acetonitrile, ethanol, and DI water three times, respectively, and then dried overnight in a vacuum oven at 100 °C.

Synthesis of $Co(PPh_3)_2Cl_2$ complex

In a round-bottom flask, $CoCl_2 \cdot 6H_2O$ (1.0 mmol) was dissolved in isopropanol (5 mL), and a solution of triphenylphosphine (2.0 mmol) in CH_2Cl_2 (5 mL) was added dropwise under stirring. The reaction mixture was refluxed for 4 h. The solid product was collected by filtration, washed with 10% ethyl acetate in hexane, and dried under vacuum to afford the $Co(PPh_3)_2Cl_2$ complex.

Synthesis of Co single atom catalyst trapped on hierarchically porous carbon doped with P and N ($Co-N_2P_2$)

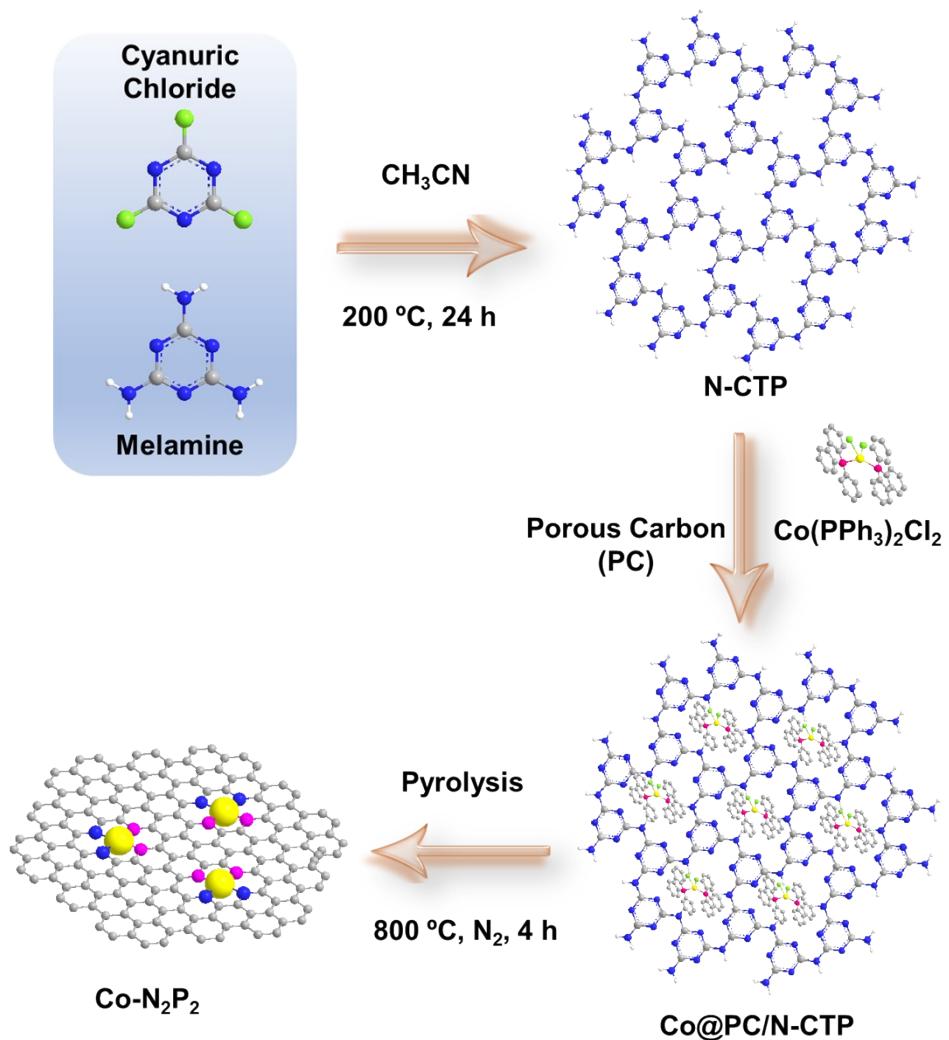
In a 100 mL round bottom flask, porous carbon (0.5 g) and N-CTP (0.5 g) were mixed in acetone (50 mL) to obtain a uniform dispersion. Subsequently, $CHCl_3$ (5 mL) containing $Co(PPh_3)_2Cl_2$ (r) added. The reaction mixture was stirred at room temperature for 24 h. The

resulting precipitate was filtered and washed with acetone and EtOH to remove unbound metal ions. Finally, the obtained solid was subjected to pyrolysis at 800 °C (5 °C min⁻¹) under N₂ flow for 4 h to afford the Co-N₂P₂.

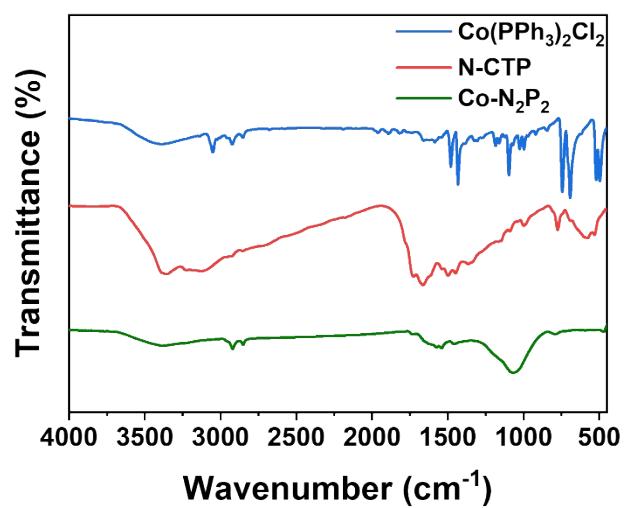
General Procedure for α -Alkylation of the ketones with benzyl alcohol

In a screw capped tube, aromatic ketone (0.5 mmol), benzyl alcohol (0.6 mmol), Co-N₂P₂ (10 mg, 4.04717 × 10⁻⁷ mmol), KO^tBu (0.5 mmol), and toluene (1.0 mL) were added and the tube was sealed and heated at 100 °C for 12 h. After that, the tube was cooled down to room temperature, catalyst was separated by centrifugation and the solvent was evaporated under reduced pressure. The crude product was extracted with ethyl acetate twice. The organic layer dried over anhydrous sodium sulphate (Na₂SO₄), then the solvent was evaporated under reduced pressure. Finally, the product was purified by column chromatography using hexane/ethyl acetate as the eluent.

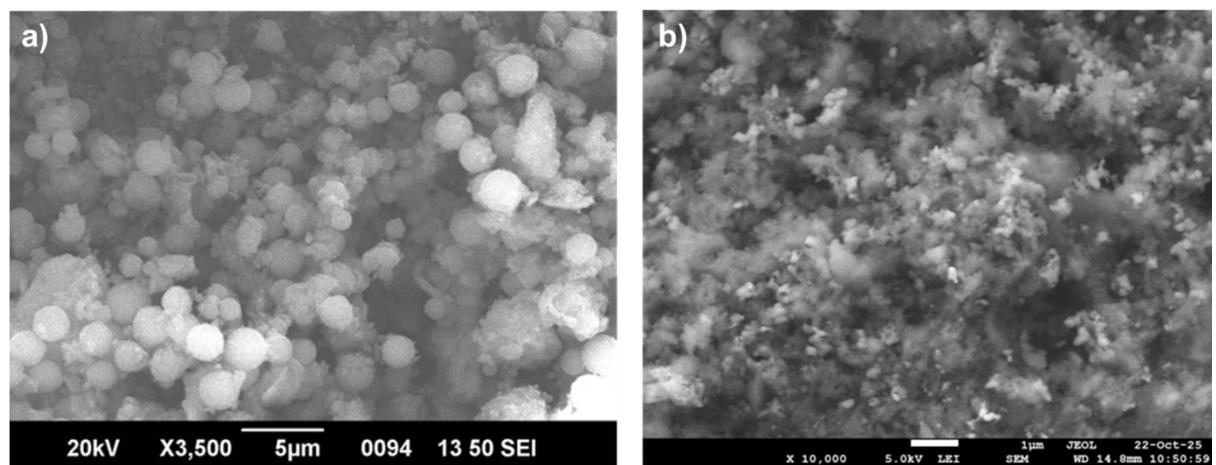
Acid leaching test


For acid treatment, the fresh catalyst (50 mg) was dispersed in 5 M HCl (25 mL) and stirred at room temperature for 12 h. The solid was washed with deionized water until the filtrate reached neutral pH (~7) and dried at 60 °C overnight. The acid-treated catalyst was subsequently employed for α -alkylation of the ketones with benzyl alcohols under the standard reaction conditions.

KSCN Poisoning test


Co-N₂P₂ (50 mg), KSCN (5.0 mmol) and water (5.0 mL) were added (5 mL) in a round-bottom flask and stirred at room temperature for 12 h. The resulting solid was filtered, washed thoroughly with deionized water, and dried in an oven at 60 °C overnight. The obtained material was subsequently employed for α -alkylation of the ketones with benzyl alcohols under the standard reaction conditions.

Gram scale synthesis of 1,3-diphenylpropan-1-one catalyzed by Co-N₂P₂


In a screw capped tube, acetophenone (1.0 g, 8.3 mmol), benzyl alcohol (0.89 g, 8.3 mmol), Co-N₂P₂ catalyst (0.1 g, 4.04717×10^{-6} mol), KO^tBu (0.93 g, 8.3 mmol), and toluene (15 mL) were added and heated at 100 °C 12 h. After that, the tube was cooled down to room temperature, catalyst was separated by centrifugation and the solvent was evaporated under reduced pressure. The crude product was extracted with ethyl acetate twice. The organic layer dried over anhydrous sodium sulphate (Na₂SO₄), then the solvent was evaporated under reduced pressure. Finally, the product was purified by column chromatography using hexane/ethyl acetate as the eluent. Green chemistry metrics was determined (Table S5).

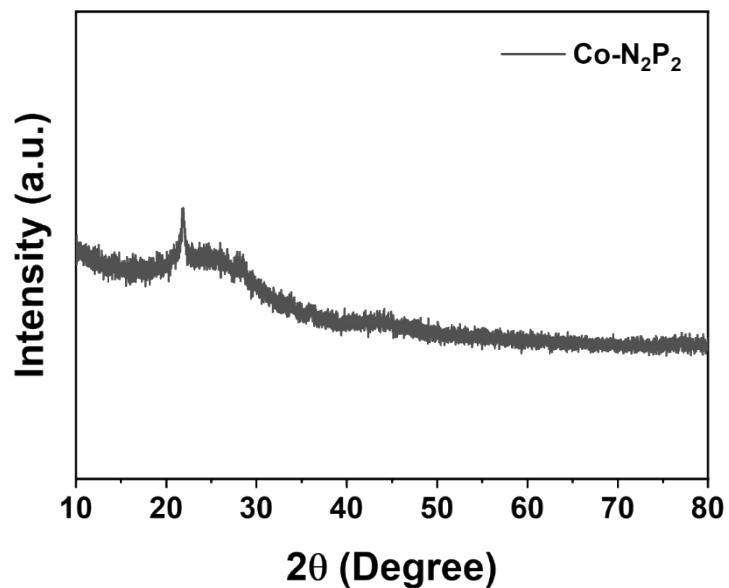
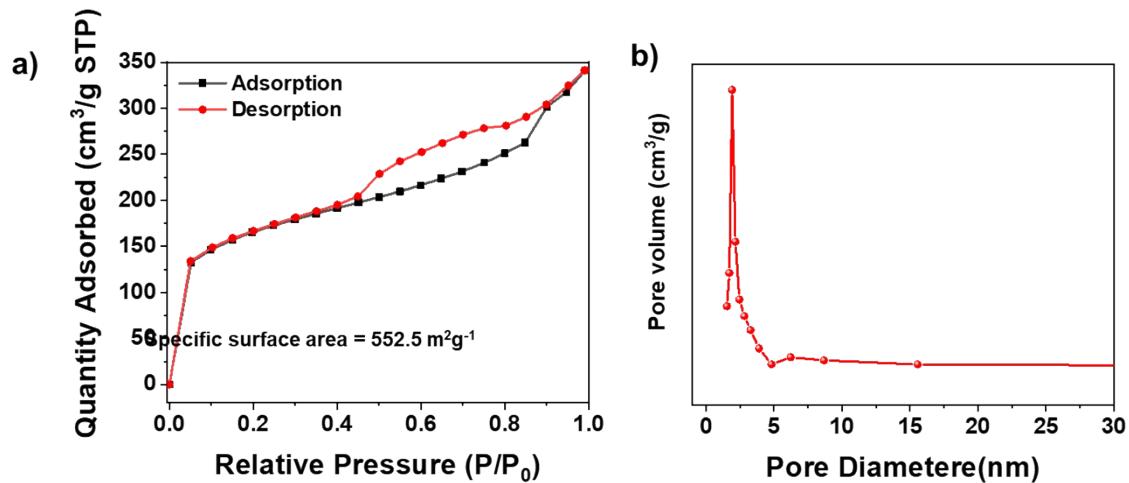

Scheme S1. Schematic representation of synthesis of Co single atom catalyst trapped on hierarchically porous carbon doped with P and N ($\text{Co-N}_2\text{P}_2$).

Fig. S1. FT-IR spectra of $\text{Co}(\text{PPh}_3)_2\text{Cl}_2$, N-CTP and $\text{Co-N}_2\text{P}_2$


Fig. S2. SEM images of N-CTP (a) and $\text{Co-N}_2\text{P}_2$ (b).

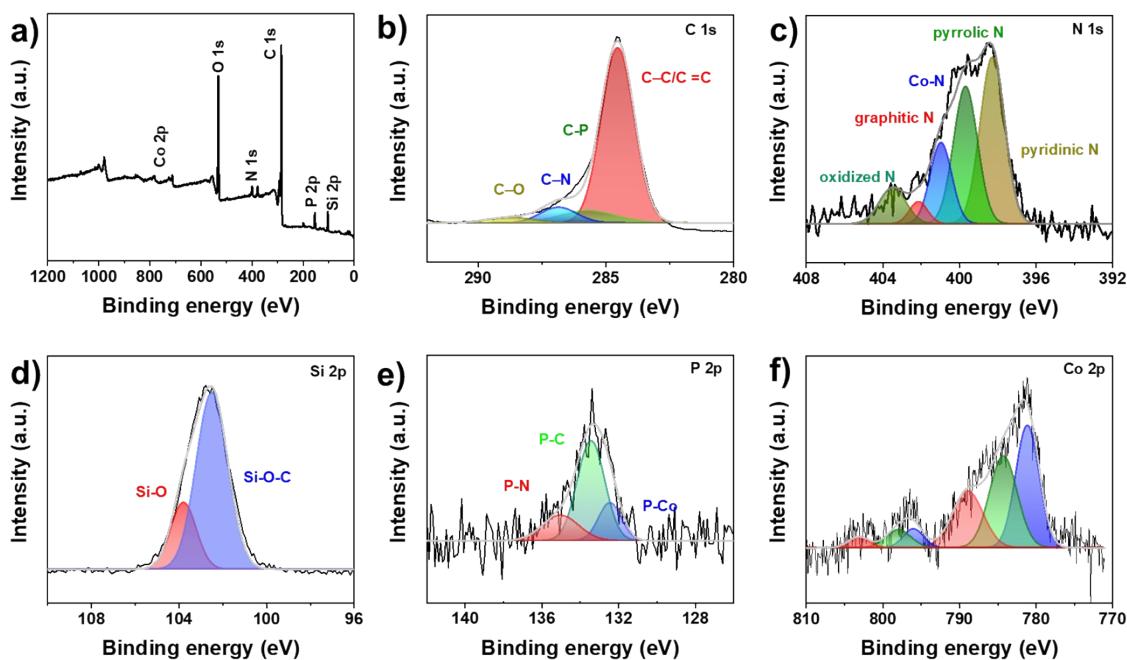

Fig. S3. PXRD pattern of Co-N₂P₂.

Table S1. ICP-AES result of Co-N₂P₂

Sample	Co (ppm)
Co-N ₂ P ₂	2.385

Fig. S4. N₂ adsorption-desorption isotherm (a) and the corresponding pore size distribution plot (b) of Co-N₂P₂.

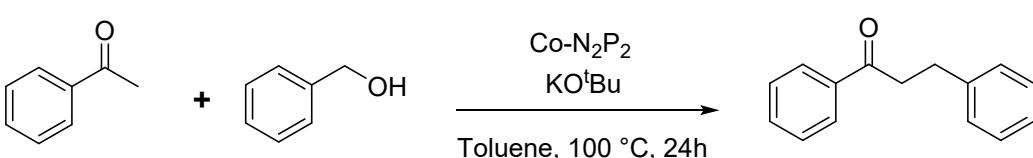
Fig. S5. XPS Spectra of Co-N₂P₂ Survey spectrum (a) C 1s spectra (b) N 1s spectra (c) Si 2p spectra (d) P 2p spectra (e) and Co 2p spectra of Co-N₂P₂

Table S2. K-edge fitting parameters

S.No.	Sample	Path	N	R (Å)	Error (Å)	$\sigma^2 \times 10^2$ (Å ²)	ΔE_0 (eV)	R-factor
1	Co Foil	Co-Co	12.0	2.489	+/- 0.0028	0.006	6.352	0.002
2	CoO	Co-O	6.0	2.094	+/- 0.034	0.011	-4.066	0.009
		Co-Co	12.0	3.003	+/- 0.013	0.009	-4.066	0.009
3	CoPc	Co-N	4.0	1.905	+/- 0.009	0.003	3.02	0.015
		Co-C	4.0	2.909	+/- 0.013	0.001	3.02	0.015
4	Co-N ₂ P ₂	Co-N	2	1.892	+/- 0.0262	0.0012	-7.633	0.018
		Co-P	2	2.298	+/- 0.0267	0.0009	-7.633	0.018

N - coordination number, R - the internal atomic distance, σ^2 - Debye-Waller factor and ΔE_0 - edge-energy shift.

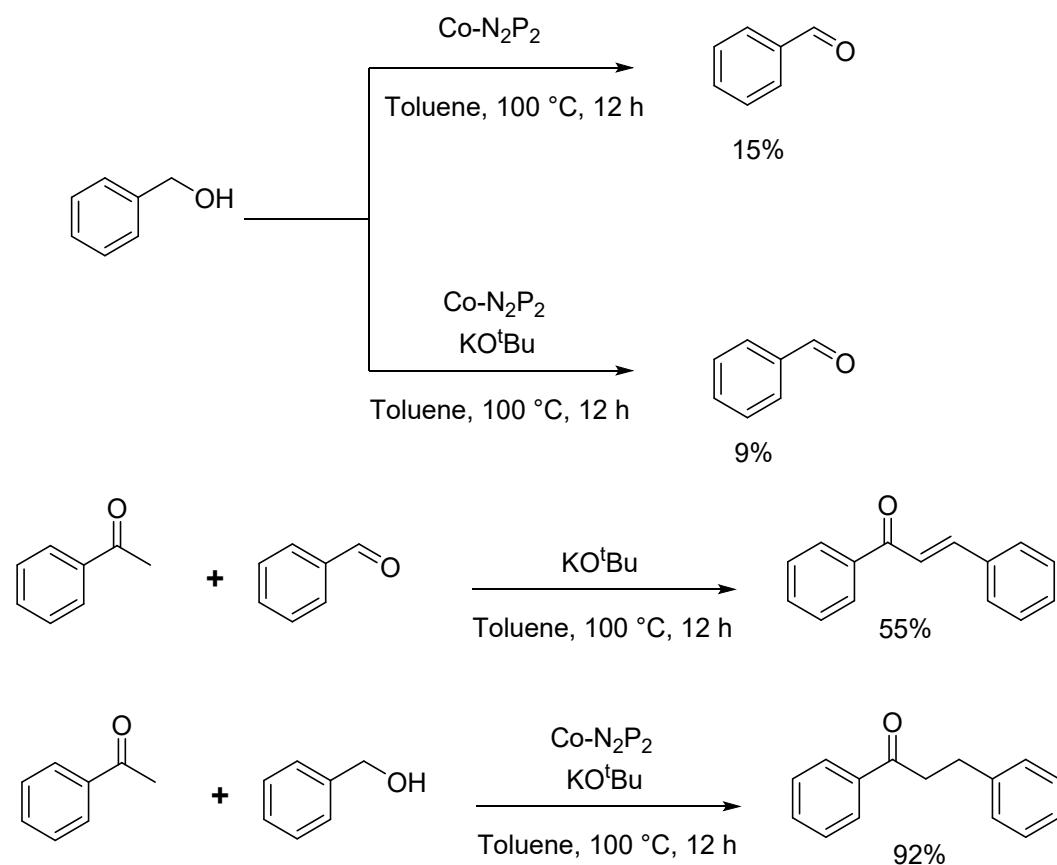
Table S3. Optimization for the α -alkylation reaction catalyzed by Co-N₂P₂

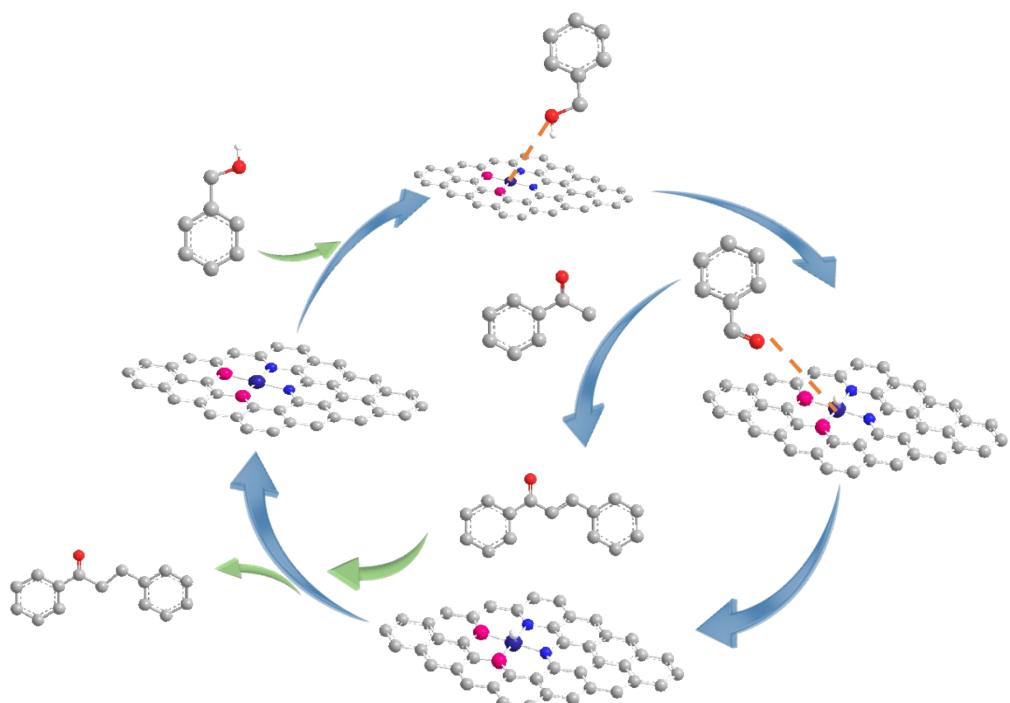


S. No	Catalyst	Solvent	Base	Temp (°C)	Time (h)	Yield (%)
1	-	Toluene	-	100	12	NR
2	-	Toluene	KO ^t Bu	100	12	NR
3	PC	Toluene	KO ^t Bu	100	12	NR
4	Co(PPh ₃) ₂ Cl ₂	Toluene	KO ^t Bu	100	12	trace
5	Co-N ₂ P ₂	Toluene	-	100	12	NR
6	Co-N₂P₂	Toluene	KO^tBu	100	12	90
7	Co-N ₂ P ₂	Xylene	KO ^t Bu	100	12	80
8	Co-N ₂ P ₂	H ₂ O	KO ^t Bu	100	12	50
9	Co-N ₂ P ₂	Dioxane	KO ^t Bu	100	12	85
10	Co-N ₂ P ₂	Toluene	KOH	100	12	70
11	Co-N ₂ P ₂	Toluene	NaOH	100	12	64
12	Co-N ₂ P ₂	Toluene	K ₂ CO ₃	100	12	trace
13	Co-N ₂ P ₂	Toluene	Na ₂ CO ₃	100	12	trace
14	Co-N ₂ P ₂	Toluene	KO ^t Bu	80	12	54
15	Co-N ₂ P ₂	Toluene	KO ^t Bu	120	12	92
16	Co-N ₂ P ₂	Toluene	KO ^t Bu	100	18	90
17	Co-N ₂ P ₂	Toluene	KO ^t Bu	100	24	92

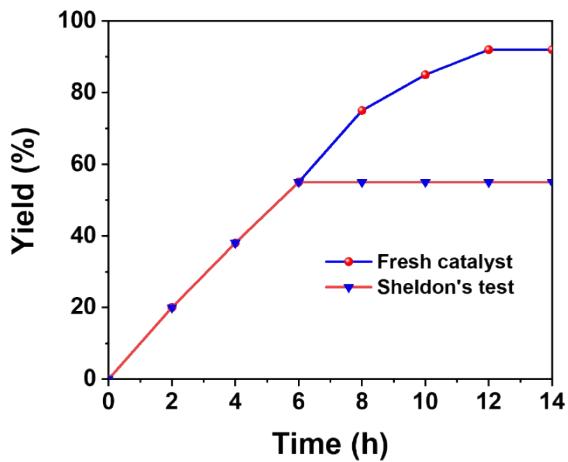
Table S4. Comparison of catalytic activity of Co-N₂P₂ with previously reported catalysts for α -alkylation reactions

S.No.	Catalyst	Mol (%)	Base	Temp (°C)	Solvent	Yield (%)	No. of runs	Ref
1	Pd/C	1	K ₃ PO ₄	80	toluene	100	4	1
2	Ni/SiO ₂ -Al ₂ O ₃	20	K ₃ PO ₄	175	---	86	5	2
3	CuO _X -250	71	K ₃ PO ₄	170	n-hexane	90	5	3
4	LCN@Zn-SAC	1.5	KOH	110	toluene	92	8	4
5	Nano-Fe ₂ O ₃	30	KO ^t Bu	135	toluene	97	5	5
6	MnO ₂ @PDGS	1.5	NaOH	120	toluene	89	6	6
7	Mn-MgO/Al ₂ O ₃	9.1	-	160	toluene	95	4	7
8	Mn@CeO ₂	10	NaOH	130	toluene	98	6	8
9	Co-N₂P₂	0.8	KO^tBu	100	toluene	92	5	This work

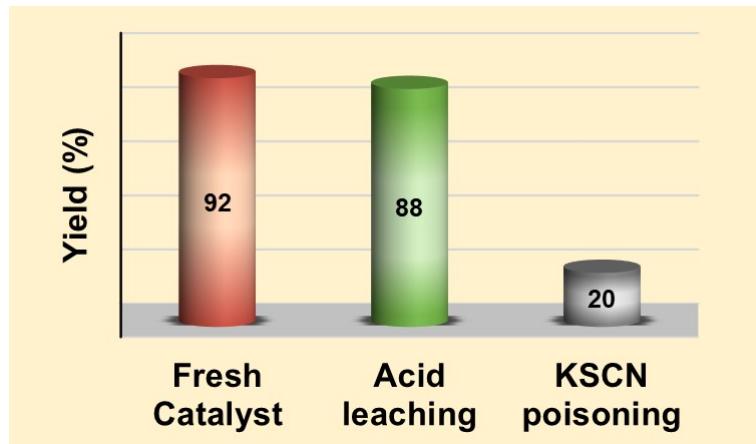

Table S5. Evaluation of Green Chemistry Metrics.

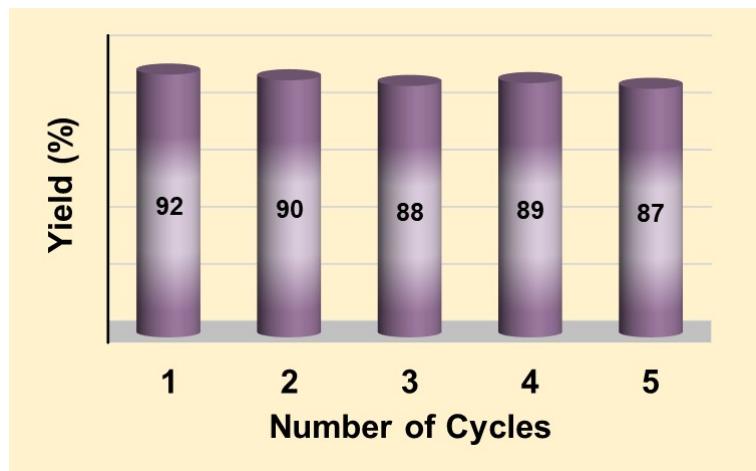

	Chemical	Weight (g)	Mol. Weight
Reactant 1	Acetophenone	1.000	120.15
Reactant 2	Benzyl alcohol	0.897	108.14
Base	KOtBu	0.931	112.21
Solvent	toluene	13.00 (15 mL)	092.06
Recycled solvent	toluene	12.18	
Product	1,3-diphenylpropan-1-one	1.46	210.28
By product	H ₂ O	0.125	018.01

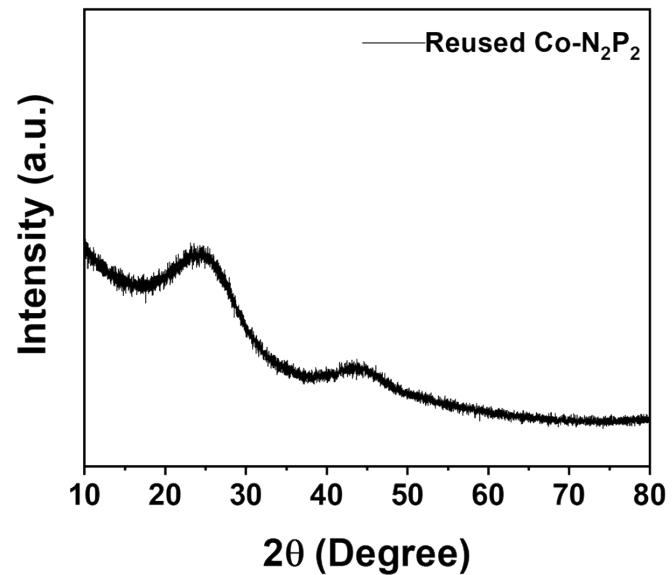
Product yield: (Isolated yield / theoretical yield) x 100 = 84%

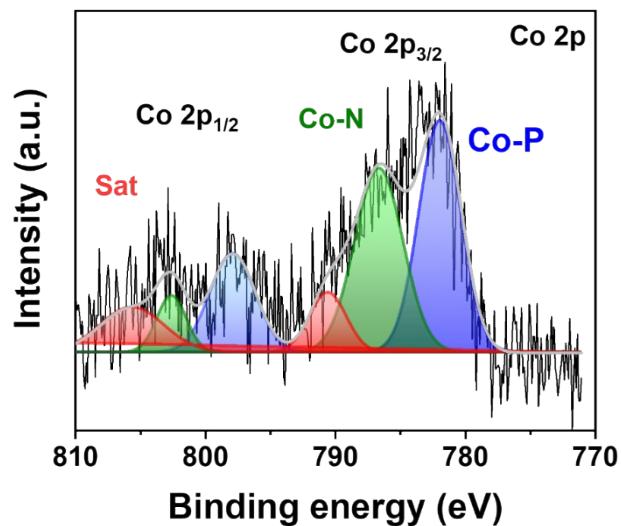

- ✓ Product yield: 84%
- ✓ E factor = $[(1 + 0.897 + 0.931 + 14 + 0.125) - (1.46 + 12.18)]/1.46 = 2.269 \text{ kg waste}/1 \text{ kg product}$
- ✓ Atom economy = $(210.28/228.29) \times 100 = 92.11\%$
- ✓ Atom efficiency = $84 \times (92.11 / 100) = 77.34\%$
- ✓ Carbon efficiency = $(15/15) \times 100 = 100\%$
- ✓ Reaction mass efficiency = $(1.46/1.897) \times 100 = 83.90\%$

Scheme S2. Mechanistic studies




Scheme S3. Proposed reaction mechanism for α -alkylation of acetophenone catalyzed by $\text{Co-N}_2\text{P}_2$


Fig. S5. Sheldon's test for Co-N₂P₂ catalyzed α - alkylation of acetophenone.


Fig. S6. Acid leaching and KSCN poisoning experiment

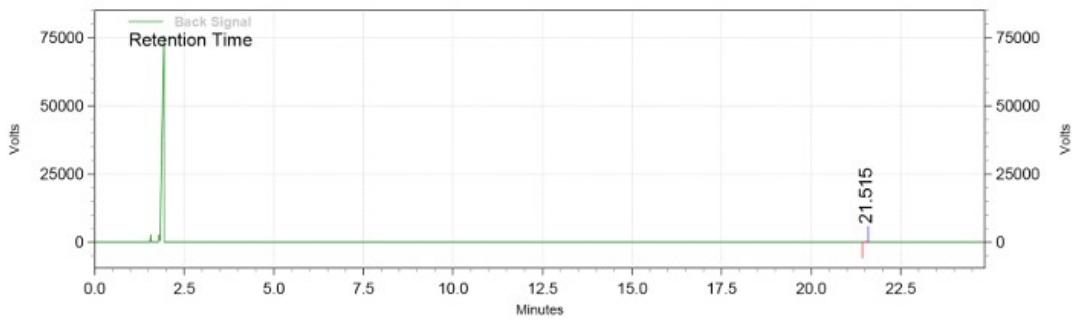
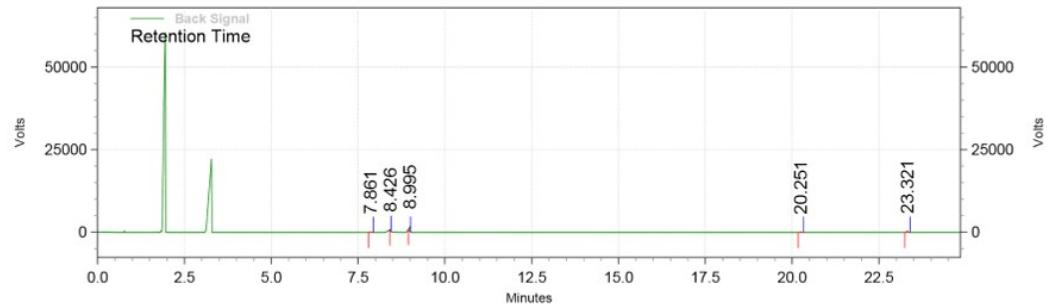

Fig. S7. Reusability of Co-N₂P₂ catalyzed α - alkylation of acetophenone.

Fig. S8. PXRD pattern of reused Co-N₂P₂ catalyst.


Fig. S9. Co 2p XPS spectrum of reused Co-N₂P₂ catalyst.

**Back Signal
Results**

Retention Time	Area	Area %	Height	Height %
21.515	3425871	100.00	1258979	100.00
Totals	3425871	100.00	1258979	100.00

Fig. S10. GC chromatogram for Co-N₂P₂ catalyzed α - alkylation of acetophenone

**Back Signal
Results**

Retention Time	Area	Area %	Height	Height %
7.861	2511521	6.72	1092671	6.05
8.426	2515887	6.73	2084109	11.54
8.995	21801192	58.34	10762652	59.58
20.251	3075429	8.23	1120413	6.20
23.321	7464566	19.98	3005194	16.64
Totals	37368595	100.00	18065039	100.00

Fig. S10. GC chromatogram for Co(PPh₃)₂Cl₂ catalyzed α - alkylation of acetophenone

References

1. N. R. Bennedsen, R. L. Mortensen, S. Kramer and S. Kegnæs, *J. Catal.*, 2019, **371**, 153–160.
2. A. Charvieux, J. B. Giorgi, N. Duguet and E. Métay, *Green Chem.*, 2018, **20**, 4210–4216.
3. D. Yang, H. Wang and C.-R. Chang, *Org. Biomol. Chem.*, 2024, **22**, 970–975.
4. X. Zhang, G.-P. Lu, K. Wang, Y. Lin, P. Wang and W. Yi, *Nano Res.*, 2022, **15**, 1874–1881.
5. M. Nallagangula, C. Sujatha, V. T. Bhat and K. Namitharan, *Chem. Commun.*, 2019, **55**, 8490–8493.
6. Y. Qiu, Y. Zhang, L. Jin, L. Pan, G. Du, D. Ye and D. Wang, *Org. Chem. Front.*, 2019, **6**, 3420–3427.
7. Y. Kita, M. Kuwabara, K. Kamata and M. Hara, *ACS Catal.*, 2022, **12**, 11767–11775.
8. R. Swaathy and S. Karthikeyan, *ACS Omega*, 2025, **10**, 9649–9660.