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1 Optimization of equivariant potentials

Table S1 Analysis of the performance of ∆TB potentials trained with SpookyNet (SP), Allegro (AG), and MACE (MC) on
small single molecules from the QM7-X dataset (label ‘1’ after the equivariant NN). We compute the mean absolute error (MAE)
for the prediction of ∆ETB and ∆FTB for molecular conformations in the QM7-X and DES15K datasets. Additionally, we
report the MAE, root-mean-squared error (RMSE), and mean absolute relative error (MARE) for the prediction of interaction
energies of molecular dimers from the S66X8 dataset. We also include results for ∆TB potentials trained using the short-range
module (e.g., ZBL repulsion interaction) implemented in SpookyNet. Furthermore, we optimized the MC1 model with respect
to the cutoff radius (rc), identifying rc = 4.0 Å as the value that parameterizes the best-performing EquiDTB model with
MACE. Errors for energies and atomic forces are given in kcal/mol and kcal/mol·Å, respectively.

∆TB

potential
Hyperparameter QM7-X DES15K S66x8
Nint lmax rc ∆ETB ∆FTB ∆ETB ∆FTB MAE RMSE MARE

SP1 2 2 5.0 0.42 1.24 15.11 6.78 2.16 3.54 111.1
SP1+ZBL 2 2 5.0 0.37 1.09 15.85 6.41 1.35 2.34 120.7

AG1 2 2 5.0 0.21 0.24 14.97 5.31 1.92 2.95 61.0

MC1
2 2 3.0 0.50 0.48 14.49 5.31 0.81 1.06 35.4
2 2 4.0 0.37 0.38 14.69 5.15 0.97 1.16 33.9
2 2 5.0 0.38 0.39 14.67 5.15 1.72 1.98 62.7

Table S2 Analysis of the performance of ∆TB potentials trained with SpookyNet (SP), Allegro (AG), and MACE (MC) on
small single molecules and molecular dimers from the QM7-X and DES15K datasets (label ‘2’ after the equivariant NN). We
compute the mean absolute error (MAE) for the prediction of ∆ETB and ∆FTB for molecular conformations in the QM7-X
and DES15K datasets. Additionally, we report the MAE, root-mean-squared error (RMSE), and mean absolute relative error
(MARE) for the prediction of interaction energies of molecular dimers from the S66X8 dataset. We also include results for ∆TB
potentials trained using the short-range module (e.g., ZBL repulsion interaction) implemented in SpookyNet. Furthermore,
we optimized the MC2 model with respect to the cutoff radius (rc), identifying rc = 4.0 Å as the value that parameterizes
the best-performing EquiDTB model with MACE. Errors for energies and atomic forces are given in kcal/mol and kcal/mol·Å,
respectively.

∆TB

potential
Hyperparameter QM7-X DES15K S66x8
Nint lmax rc ∆ETB ∆FTB ∆ETB ∆FTB MAE RMSE MARE

SP2 2 2 5.0 0.37 1.17 0.30 6.12 0.91 1.14 44.1
SP2+ZBL 2 2 5.0 0.36 1.09 0.30 5.89 1.02 1.24 48.5

AG2 2 2 5.0 0.33 0.34 1.81 0.71 1.19 1.49 46.0

MC2
2 2 3.0 0.54 0.52 4.19 2.42 1.11 1.78 38.1
2 2 4.0 0.44 0.44 3.65 2.18 1.47 1.99 41.2
2 2 5.0 0.43 0.42 3.42 2.00 1.67 2.06 57.1
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Table S3 Analysis of the performance of the reference machine learning potential (rMLP) trained with MACE on molecular
conformations from only QM7-X dataset and both datasets. We compute the mean absolute error (MAE) for the prediction of
total energies E and atomic forces F at PBE0+MBD level of molecules in the QM7-X and DES15K datasets. Additionally, we
report the MAE, root-mean-squared error (RMSE), and mean absolute relative error (MARE) for the prediction of interaction
energies of molecular dimers from the S66X8 dataset. We also optimized the rMLP potentials with respect to the cutoff radius
(rc), identifying rc = 5.0 Å as the value that parameterizes the best-performing rMLP potential with MACE, which was trained
on both datasets. Errors for energies and atomic forces are given in kcal/mol and kcal/mol·Å, respectively.

Training
dataset

Hyperparameter QM7-X DES15K S66x8
Nint lmax rc E F E F MAE RMSE MARE

QM7-X

2 2 3.0 0.59 0.63 20.98 2.25 2.62 3.19 82.2
2 2 4.0 0.49 0.53 20.31 2.08 2.49 3.01 97.5
2 2 5.0 0.47 0.54 19.29 2.11 1.83 2.36 85.7
2 2 6.0 0.49 0.55 19.09 2.20 2.10 2.47 90.2

QM7-X
and
DES15K

2 2 3.0 0.62 0.67 5.94 1.78 2.52 3.00 80.5
2 2 4.0 0.50 0.57 5.10 1.60 2.12 2.66 75.9
2 2 5.0 0.48 0.57 4.87 1.57 1.19 1.51 48.0
2 2 6.0 0.52 0.59 5.28 1.64 1.52 1.88 65.0
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2 Additional results for non-covalent systems

Fig. S1 Benchmarking ∆TB potentials for calculating interaction energies (Eint) in small molecular dimers from the S66x8
dataset. Heatmap plot of the mean absolute relative errors (MARE) for each studied model, split according to the predominant
non-covalent interaction in the molecular dimer. Reference values for Eint were calculated using PBE0+MBD. All calculations
include a many-body dispersion treatment, except for xTB, which considers D4 correction.

Fig. S2 Benchmarking ∆TB potentials for calculating atomic forces (Fat) in small molecular dimers from the S66x8 dataset.
Correlation plots between DFT and ML Fat values for each dimer group computed by using the NNrep, SP2 and AG2 models.
For comparison, we also include the corresponding values obtained with DFTB3. Reference values for Fat were calculated using
PBE0+MBD. All calculations include a many-body dispersion treatment.
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Fig. S3 Ethyne-based molecular dimers, for which the standard tight-binding methods (DFTB3 and GFN2-xTB) failed to
accurately compute their atomic forces, Fat. Reference values for Fat were calculated using PBE0+MBD.

Table S4 Performance of ∆TB potentials in predicting the interaction energies Eint and atomic forces Fat for equilibrium and
non-equilibrium small molecular dimers in S66x8 dataset. We show the mean absolute errors (MAE) for the NNrep, SP2, AG2,
and EquiDTB (i.e., MC1) models. For comparison, the error values for widely used TB methods (DFTB3 and GFN2-xTB) and
the reference ML potential (rMLP) are also presented. All calculations consider a many-body dispersion treatment, except for
xTB, which considers D4 correction. The error values for energies and forces are given in kcal/mol and kcal/mol·Å, respectively.

Model
Eint Fat

Compressed Elongated Total Total

DFTB3 1.39 0.83 1.04 4.52
GFN2-xTB 1.23 0.64 0.86 5.20
NNrep 3.45 2.94 3.13 1.57
SP2 0.99 0.86 0.91 1.68
AG2 1.45 1.03 1.19 0.55
EquiDTB 1.23 0.81 0.97 0.52
rMLP 1.25 1.16 1.19 0.57

S 5



3 Distribution of energy and force corrections

Fig. S4 Box plots for the target properties (a) ∆ETB and (b) ∆FTB obtained using the DFTB1 and DFTB3 methods.
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4 Additional results for calculation of the minimum energy path

Fig. S5 Assessing predictions of non-equilibrium properties of flexible molecules. Minimum energy path for the rotation of the
dihedral connecting the aromatic ring and the linear-type structure in (a) paracetamol and (b) tyrosine. The rotational profiles
were computed performing Nudged Elastic Band (NEB) calculations. We present the results obtained by the DFTB3 method,
NNrep model, and SP2 model. Reference values for energies were calculated using PBE0+MBD. All calculations include a
many-body dispersion treatment.
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5 Energetic and structural properties along MD trajectories

Fig. S6 Variation of the total energy of (a) alanine dipeptide, (b) zaprinast, and (c) ligand 2Q5k as a function of simulation
time. Molecular dynamics simulations were performed at 300 K for 100 ps. Results are shown for the DFTB3 method, the
EquiDTB model, and the rMLP potential. All calculations include a many-body dispersion treatment.

Fig. S7 Variation of the total energy of zaprinast as a function of simulation time at 600 K. Results are shown for the DFTB3
method and the EquiDTB model. Atomistic representations of the molecular structure of zaprinast at 80 ps of simulation are
also provided to highlight bond-breaking in the triazole ring observed with the DFTB3 method.
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Fig. S8 To evaluate the structural evolution, we present the two-dimensional space defined by the root-mean-squared deviation
with respect to the optimized geometry, ∆R, and the radius of gyration, Rg. The results are shown for (a) alanine dipeptide,
(b) zaprinast, and (c) ligand 2Q5K, obtained using the EquiDTB model and the rMLP potential.
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6 Computing vibrational modes of α-amino acids

Table S5 List of α-amino acids considered for the analysis of vibrational modes. The mean absolute error (MAEω) and the
maximum deviation (ωmax) in frequency prediction per molecule are shown for the DFTB3 method, NNrep model, and the SP2
model.

α-amino
acid

Reduced
name

DFTB3 NNrep SP2
MAEω ωmax MAEω ωmax MAEω ωmax

Alanine Ala 55.5 294.0 6.09 21.7 21.7 189.3
Arginine Arg 50.4 302.6 13.3 46.1 18.8 159.3
Asparagine Asn 65.1 358.9 12.1 32.7 17.7 133.6
Aspartic acid Asp 52.9 299.7 9.2 56.6 20.0 144.1
Glutamic acid Glu 50.9 305.0 10.5 52.7 19.0 206.3
Glutamine Gln 58.8 310.7 17.0 45.4 15.1 98.6
Glycine Gly 57.4 290.6 7.1 32.0 26.1 215.0
Histidine His 49.4 311.2 24.9 77.8 21.7 183.7
Isoleucine Ile 47.1 292.5 7.5 26.8 13.3 96.1
Leucine Leu 47.4 280.8 6.8 21.3 16.9 120.2
Lysine Lys 46.5 285.4 5.6 27.0 8.8 66.5
Phenylalanine Phe 50.5 286.0 15.3 51.7 21.5 160.3
Proline Pro 43.9 322.0 10.3 34.0 20.2 199.4
Serine Ser 62.1 283.1 9.3 47.6 18.3 93.9
Threonine Thr 58.4 289.4 9.8 49.7 18.1 94.8
Tryptophan Trp 48.0 333.1 19.2 90.9 16.0 152.8
Tyrosine Tyr 47.8 285.5 16.0 44.9 16.1 128.1
Valine Val 48.3 307.9 13.7 66.5 19.5 172.4
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7 Determining the energetic ranking of drug-like molecules

Table S6 Performance of ∆TB potentials in predicting the energetic ranking (RK) for equilibrium and non-equilibrium confor-
mations of large drug-like molecules extracted from Aquamarine dataset. We show the average of the mean absolute error for
the change in energetic ranking place ∆RK (⟨MAE ∆RK⟩), the average of standard deviation of ∆RK (σ), and the average of
the maximum ∆RK ((∆RK)max).In this analysis, we consider ∆RK values obtained using the widely used tight-binding meth-
ods (DFTB3 and GFN2-xTB), SP2 and AG2 models, the EquiDTB1 and EquiDTB3 models, and the rMLP potential. The
reference values for the energetic rankings were calculated using PBE0+MBD. All calculations consider a many-body dispersion
treatment, except for xTB which considers D4 correction.

Dataset metric DFTB3 GFN2-xTB SP2 AG2 EquiDTB3 EquiDTB1 rMLP

Equilibrium
conformers

⟨MAE ∆RK⟩ 4.9 4.9 5.6 9.7 2.7 3.2 4.0
⟨σ⟩ 4.3 4.1 4.6 7.1 2.6 2.9 3.5
⟨(∆RK)max⟩ 16.7 16.1 18.1 26.8 10.4 12.2 14.2

Equilibrium and
non-equilibrium
conformers

⟨MAE ∆RK⟩ 0.53 0.31 0.31 0.48 0.12 0.18 0.21
⟨σ⟩ 0.72 0.53 0.52 0.68 0.29 0.38 0.41
⟨(∆RK)max⟩ 2.55 1.76 1.74 2.39 0.99 1.24 1.36
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