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Experimental Section

Materials

Zinc foil (99.99%, 100 pum), titanium foil (99.99%, 30 um) and conductive acetylene black were sourced
from Shenzhen Dongxia Times Technology Company, China. Activated carbon was purchased from
Xianfeng Nano. Zinc sulfate heptahydrate, L-(+)-Lysine Monohydrochloride (LLH), Carboxymethyl
Cellulose (CMC), and Sodium sulfate anhydrous were purchased from Aladdin, while iodine was obtained
from Macklin. Sodium chloride was purchased from Beijing Chemical Work. Glass microfiber separators
(GF/D) were procured from Whatman, and all other materials were purchased from Macklin. Deionized water

was used to prepare the aqueous electrolyte.

Assembly of cells: The Zn[I, pouch cells were configured by applying an I-containing electrode sized
1.13 cm? as the cathode, where Zn foil (1.13 cm?) with a thickness of 100 pm was applied as the anode. Glass
fiber discs saturated with different electrolytes (2 M ZnSO,4 and 2 M ZnSO, with LLH) are utilized as
separators between the cathode and anode.

Fabrication of Zn||I, full cell: A cathode slurry was formulated by blending activated carbon, CMC, and
conductive carbon black at a mass ratio of 7:2:1 in deionized water, followed by homogenization and coating
onto Titanium mesh. The electrode was vacuum-dried at 60°C for 6 h. The electrode sheet was heated with
I, at 100°C for 30 minutes, followed by excess iodine removal through heating at 40°C, synthesizing the
AC/I: cathode.

Characterization

The morphologies of Zn foil anodes were observed by field emission scanning electron microscopy
(FESEM, ZEISS Gemini 300), operated at 2 kV and 10 mA. X-ray photoelectron spectroscopy (XPS)
measurements were carried out through a Thermo Scientific K-Alpha using monochromatic Al Ko radiation.
The crystal structure and material composition information were gathered by X-ray diffraction (XRD,
Rigaku, MiniFlex600, Cu Ka, XPS, H nuclear magnetic resonance (NMR spectroscopy (Bruker 600 MHz),

and Fourier Transform Infrared Spectrometer (Thermo Scientific Nicolet iS20).
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Electrochemical Measurements

All batteries were assembled in the air using pouch cells and the performances of Zn||Zn symmetric cells
and Zn||I, full cells were collected by Land CT3002A battery test system. The electrolyte used 2 M ZnSO4
in water, and all the electrodes were cut into circular pieces with a diameter of 12 mm. The stability of the
zinc anode was tested using Zn||Zn cells with Glass fiber separators. In addition, non-woven fibrous
membranes were used to test the cycling life under high current density. Coulombic efficiency (CE)
measurements and deposition/stripping curve were performed on Zn||Ti half-cells. Electrochemical
impedance spectroscopy (EIS) was carried out using a Corrtest electrochemical workstation (Corrtest,
Wuhan, China) within the frequency range from 100 kHz to 0.1 Hz. Linear polarization measurements were
carried out using a three-electrode system with bare Zn as the working electrode, Pt plate as the counter
electrode, and Ag/AgCl as the reference electrode. Tafel curve and potentiostatic polarization were all
performed on the Corrtest electrochemical workstation with a three-electrode system (Zn foil as work
electrode, Pt as counter electrode, and Ag/AgCl as reference electrode).
DFT calculations

Quantum chemistry calculations were first performed to optimize molecular geometry of LLH solvent
molecules, and SO, anions using the Gaussian 16 package [gaussian] at B3LYP/6-311+G(d,p) level of
theory. The atomic partial charges on these solvent molecules and ions were calculated using the ChelpG
method at the same level of theory (the B3LYP hybrid functional and the 6-311+G(d,p) basis set). The
atomistic force field parameters for all ions and solvent molecules are described by the AMBER format and
are taken from a previous work [amber]. The SPC/E water model was adopted in this work. The cross-
interaction parameters between different atom types are obtained from the Lorentz-Berthelot combination
rule.

Representative ion structures were extracted from extensive atomistic simulations, and these solvation
structures were adopted as starting configurations for additional DFT calculations. DFT calculations were
performed using the Gaussian 16 software [gaussian] at the same level of theory (B3LYP/6-311+G(d,p)) and
with Grimme’s-D3 (gd3bj) dispersion correction to obtain the corresponding optimized coordination
structures and thereafter binding energies.

Additional first principle calculations were performed using the Vienna ab initio Simulation Package
(VASP) [vasp]. Electron-ion interactions were described by the projector-augmented wave (PAW) pseudo
potentials [potential]. The Perdew-Bruke-Ernzerh of exchange-correlation functional of the generalized-
gradient approximation (GGA) was adopted, and the cutoff energy for this plane-wave basis set was set to
be 450 eV, and the I'-centered k-point grids were used for Brillouin zone integrations. The exchange-
correlation functional with a Gaussian smearing width term of 0.05 eV was used. The convergence criterion
for electronic self-consistent iteration was set to 1x107eV.

The Zn (002)/(100)/(101) surfaces were constructed consisting of four atom layers. The bottom two
layers in these electrodes were fixed during calculation to simulate bulk structures, while the top two atom
layers were free to simulate surface state. A vacuum of 15 A was contained in each modeling system to

reduce interactions between each surface.



All structures were fully relaxed to their optimized geometries with the force convergence set to 0.01
eV/A. The absorption of H,O and LLH molecules on Zn (002)/(100)/(101) surfaces were comprehensively

optimized to calculate the corresponding absorption energies.
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Figure S1. The electrochemical performance of Zn||Zn symmetric cells tested in ZnSO,
electrolyte with different concentrations of LLH at 10 mA cm™2, 2.5 mA h cm™.
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Figure S2. The discharge/charge curves of pure activated carbon.
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Figure S3. CV curves of different electrolytes at a scanning rate of 0.8 mV s-!.



Figure S4. Reaction kinetic analysis. a, b, ¢, d)The Tafel slope determined from CV curves of
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Figure S5. Plots of log i vs. log v at sharp cathodic/anodic peak pair (peak current: i,, scan rate:

V).
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Figure S6. Proportion of surface-controlled and diffusion-controlled capacities in ZnSO4
electrolytes at different scan rates.
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Figure S7. Ex situ XPS of I 3d at different potentials during charge and discharge.
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Figure S8. The different coordination forms of fixed I* and their binding energies.
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Figure S10. SEM images of Zn anode surfaces during the deposition in Zn||Zn symmetric cells
at ] mA cm=2 1 mAhcm™2.
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Figure S11. The linear scanning voltammetry curves of Zn||Ti cells tested at a scan rate of 1
mV s7! in ZnSO, electrolyte with different concentrations of LLH.
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Figure S12. The H, evolution behaviors of Zn in ZnSO, electrolyte with different
concentrations of LLH.
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Figure S13. Electric double layer capacitance (EDLC) measurements for Zn substrates in 2 M
ZnS0O, electrolytes with and without LLH. The cyclic voltammetry (CV) curves for Zn||Zn cells
with (a) ZnSOy, electrolyte and (b) ZnSO,/LLH electrolyte in a voltage range from —15 mV to
15 mV under various scanning rates.

The capacitance (C) is determined by the linear relationship between capacitive current (i)
and scan rate (v), which can be obtained from the slope of the i. versus v graphs. Therefore, the
EDLC is calculated through the following equation:

L

c=—
v
Where i, refers to the capacitive currents in CV scans. Here, we choose i = (ipy+ — ioy-)/2,
meaning the half value of the current difference during forward scan and negative scan at 0 V.
v refers to the scan rates of CV tests. Here, we selected 2, 4, 6, 8, and 10 mV s™! as the scan
rates, respectively. Corresponding CV is measured by scanning between —15 and 15 mV with

Zn||Zn symmetric cells.
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Figure S14. LUMO and HOMO energies of H,O, LL and LL".

Figure S15. Contact angles of (a) ZnSO, and (b) ZnSO,4 with LLH on Zn foil surface.
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Figure S16. (a) SEM images of polished Zn after 15-day immersion in ZnSO4/LLH electrolyte.
The EDS mapping of (b) C, (c) N, (d) O, (e) S, (f) Zn.
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Figure S17. (a) SEM images of polished Zn after 15-day immersion in ZnSO, electrolyte. The
EDS mapping of (b) C, (c) N, (d) O, (e) S, (f) Zn.
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Figure S18. Corresponding XRD patterns of Zn plates after immersion in electrolytes.
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Figure S19. Zn plate after immersion in ZnSO,4 /LLH electrolyte and LLH powder High-
resolution XPS spectra of a) C 1s,b) O 1s, and c) N Is.
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Figure S21. The optimized adsorption configurations of H,O on different Zn crystal planes.
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Figure S22. 2H NMR spectra.
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Figure S23. FTIR spectra of ZnSO,4 and ZnSO4/LLH electrolytes.
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Figure S24. A digital photograph of in-situ pH detection device.
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Figure S25. The electrochemical curve of Zn deposition and dissolution in the homemade in-
situ pH monitoring device: a) ZnSO, /LLH, b) ZnSOs,.
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Figure S27. Galvanostatic voltage profiles of a Zn||Zn symmetric cell cycled in ZnSO,
electrolytes with/without LLH for plating-stripping at 5 mA cm2, | mA h cm™
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Figure S28. Galvanostatic voltage profiles of a Zn||Zn symmetric cell cycled in ZnSO4
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Figure S29. The CE of Zn||Ti cells in ZnSOy, electrolytes with/without LLH at 2 mA ¢cm™2, 1

mA h cm™.
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Figure S30. The CE of Zn||Ti cells in ZnSOy electrolytes with/without LLH at 5 mA cm™2, 1

mA h cm™.
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Figure S31. Galvanostatic charge—discharge curves at different numbers of cycles.

Figure S32. Pouch-type batteries folded from the initial 0° to 90°, 180°, and back to 0° for the
Optical images of driving the small fan operation under different bending states.
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Table S1 Comparison of electrochemical performances of four-electron-transfer-driven iodine-

based batteries.

Cathode Electrolyte Anode I loading Battery Reference
(mg cm?) performance
1 Ti;C,l, 2M ZnCl, + 1 M KCI Zn 1-1.5 ~160 mAh-g!, [4]
3 A gl 2800"
2 MAI I MLiTFSI+ 0.2 M Li 3 408 mAh-g!, [5]
LiNO; + 0.1 M LiCl 0.5 A g, 500"
3 AC/I,(THA 2M ZnSO4+0.5M Zn 1 450 mAh-g’!, [6]
) N(CHj3;);-HCl 2 Agl, 5000t
4 BPD-HI 1 M LiTFSI + 2 wt% Li 2.5 385 mAh-g!, [7]
LiNO in DOL/DME 2Agl, 850h
5 CooSs@NC/ 7.5 M ZnCl, Zn 2 415.5 mAh-g!, [8]
I 5A g, 5000t
6 L@C(ZTEs 0.5 M Niacinamide + 3 Zn 1.5 395 mAh-g!, [9]
) M Dimethyl sulfone + 1 2 A gl 2000t
M Zn(ClO4)2 6H20
7 N/F- 2M ZnSO4+ 0.1 M Zn 2 417.6 mAh-g!, [10]
PC/Znl, Znl,+0.1 M ZnBr, 5A g, 8000™
8 [Cu@Cu 2 M ZnSO4 + 0.025 M Zn 3-4 120 mAh-g!, [11]
Znl, 1 Ag! 2600t
9 ODASnl, 2M ZnSO4+ 0.5 M Zn 3 399.7 mAh-g-!, [12]
LiCl 1 Ag', 2000t
AC 2M ZnSO,4+0.5M Zn 1.3 416 mAh-g’!, This work
LLH 5 A g1,6000t
Table S2 Comparison of prices and battery performance of different additives.
Additive Redox Cycle Life Price Reference
type
LLH N /12/21 * 403 mAh-g!,5A g, ¥1137.60 per 10 kg (Macklin) This work
6000 th
NaCl N /12/21 t 368 mAhgl,5A g, ¥407.12 per 10 kg (Aladdin) This work
1500t
KI " /Ig ¥7200.90 per 10 kg (Aladdin)
PryNCl 20" /1(2)/21 * 370 mAh g, 5C, 1100 Laboratory synthesis [13]
th
N. N-bis (2- 7" /Ig 160 mAhg!, 2 A gl, ¥37261 per 10 kg (Millipore) [14]
hydroxyethyl) 3000
glycine

The synthesis of quaternary ammonium salts involves complex processes and incurs high costs.
Most quaternary ammonium salts reported in the literature are laboratory-synthesized and have
not been produced on a large scale. Common additives such as potassium iodide or amino acids
cannot simultaneously improve the performance of both the cathode and anode. While NaCl
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exhibits insufficient I anchoring capability at comparably low concentrations, increasing its
concentration would entail higher costs and intensify side reactions.
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