# Copyright The Royal Society of Chemistry, 1999 # CCDC Number: 186/1469 data_brcun3 _audit_creation_method SHELXL-97 _chemical_name_systematic ; 'Tris(copper bromide) 1,3,5-triazine' ; _chemical_name_common 'Tris(copper bromide) triazine' _chemical_formula_moiety 'C3 N3 H3 Cu3 Br3' _chemical_formula_sum 'C3 H3 Br3 Cu3 N3' _chemical_formula_weight 511.43 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cu' 'Cu' 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Br' 'Br' -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M Pbca loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z+1/2' 'x+1/2, -y+1/2, -z' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z-1/2' '-x-1/2, y-1/2, z' _cell_length_a 16.096(3) _cell_length_b 6.5180(13) _cell_length_c 18.010(4) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1889.5(7) _cell_formula_units_Z 8 _cell_measurement_temperature 193(2) _cell_measurement_reflns_used 6952 _cell_measurement_theta_min 3 _cell_measurement_theta_max 28 _exptl_crystal_description Block _exptl_crystal_colour red-orange _exptl_crystal_size_max 0.06 _exptl_crystal_size_mid 0.06 _exptl_crystal_size_min 0.04 _exptl_crystal_density_meas 'not measured' _exptl_crystal_density_diffrn 3.596 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1872 _exptl_absorpt_coefficient_mu 19.322 _exptl_absorpt_correction_type refdelf _exptl_absorpt_factor_muR 4.830 _exptl_absorpt_process_details ; Parkin S,Moezzi B & Hope H, (1995) J. Appl. Cryst. 28, 53-56 Cubic fit to sin(theta)/lambda - 24 parameters ; _exptl_absorpt_correction_T_min 0.0041 _exptl_absorpt_correction_T_max 0.0119 _exptl_absorpt_correction_T_ave 0.0081 _exptl_absorpt_Rmerge_before 0.0682 _exptl_absorpt_Rmerge_after 0.0470 _exptl_special_details ; ; _diffrn_ambient_temperature 193(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type STOE_IPDS _diffrn_measurement_method 'area detector frames' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% none _diffrn_reflns_number 2074 _diffrn_reflns_av_R_equivalents 0.0000 _diffrn_reflns_av_sigmaI/netI 0.0512 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_max 21 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 8 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 23 _diffrn_reflns_theta_min 3.40 _diffrn_reflns_theta_max 28.12 _reflns_number_total 2074 _reflns_number_gt 1776 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'STOE_IPDS software' _computing_cell_refinement 'STOE_IPDS software' _computing_data_reduction 'STOE_IPDS software' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL/PC (version 5.03)(Sheldrick, 1994)' _computing_publication_material 'SHELXL-93 (Sheldrick, 1993)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0528P)^2^+1.536P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary 'direct methods' _atom_sites_solution_secondary 'difference Fourier synthesis' _atom_sites_solution_hydrogens 'geometrically located' _refine_ls_hydrogen_treatment 'riding model' _refine_ls_extinction_method none _refine_ls_extinction_coef 0.0030(8) _refine_ls_number_reflns 2074 _refine_ls_number_parameters 109 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0474 _refine_ls_R_factor_gt 0.0391 _refine_ls_wR_factor_ref 0.0968 _refine_ls_wR_factor_gt 0.0915 _refine_ls_goodness_of_fit_ref 1.087 _refine_ls_restrained_S_all 1.087 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Br1 Br 0.10151(3) 0.13231(7) 0.38326(2) 0.01835(14) Uani 1 d . . . Br2 Br 0.17753(2) 0.64671(7) 0.50551(3) 0.01678(14) Uani 1 d . . . Br3 Br 0.16961(3) 0.63287(7) 0.27057(3) 0.01901(14) Uani 1 d . . . Cu1 Cu 0.11794(4) 0.50943(11) 0.39256(3) 0.02342(17) Uani 1 d . . . Cu2 Cu 0.18893(4) 0.01088(10) 0.28046(4) 0.02360(17) Uani 1 d . . . Cu3 Cu 0.17711(4) 0.01853(10) 0.49534(4) 0.02188(17) Uani 1 d . . . N1 N -0.0050(2) 0.6108(7) 0.3854(2) 0.0187(8) Uani 1 d . . . C2 C -0.0510(3) 0.5478(9) 0.3288(3) 0.0221(10) Uani 1 d . . . H2 H -0.0279 0.4472 0.2967 0.026 Uiso 1 calc R . . N3 N -0.1276(2) 0.6153(7) 0.3136(2) 0.0183(8) Uani 1 d . . . C4 C -0.1580(3) 0.7512(7) 0.3623(2) 0.0168(8) Uani 1 d . . . H4 H -0.2127 0.8009 0.3541 0.020 Uiso 1 calc R . . N5 N -0.1170(2) 0.8225(6) 0.4218(2) 0.0160(7) Uani 1 d . . . C6 C -0.0403(3) 0.7479(8) 0.4304(2) 0.0175(8) Uani 1 d . . . H6 H -0.0087 0.7958 0.4715 0.021 Uiso 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Br1 0.0252(2) 0.0100(3) 0.0199(2) 0.00005(14) 0.00132(15) 0.00104(15) Br2 0.0182(2) 0.0072(2) 0.0249(3) 0.00002(14) -0.00241(15) -0.00045(14) Br3 0.0202(2) 0.0105(3) 0.0263(3) 0.00002(15) 0.00370(16) 0.00077(15) Cu1 0.0231(3) 0.0187(4) 0.0285(3) -0.0029(2) -0.0014(2) 0.0017(2) Cu2 0.0251(3) 0.0200(4) 0.0257(3) 0.0018(2) 0.0001(2) -0.0008(2) Cu3 0.0244(3) 0.0132(3) 0.0280(3) -0.0047(2) -0.0007(2) 0.0031(2) N1 0.0157(16) 0.017(2) 0.023(2) -0.0036(14) 0.0028(13) -0.0008(14) C2 0.021(2) 0.020(3) 0.025(2) -0.0082(18) -0.0014(17) 0.0061(17) N3 0.0217(17) 0.013(2) 0.0198(19) -0.0038(14) -0.0030(14) 0.0034(13) C4 0.0190(18) 0.013(2) 0.018(2) -0.0015(16) -0.0014(15) 0.0014(15) N5 0.0187(16) 0.010(2) 0.0192(18) -0.0004(13) 0.0039(13) -0.0012(13) C6 0.0191(17) 0.014(2) 0.0192(19) -0.0024(16) 0.0019(15) 0.0018(15) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Br1 Cu2 2.4565(8) . y Br1 Cu3 2.4708(8) . y Br1 Cu1 2.4779(10) . y Br2 Cu1 2.4204(8) . y Br2 Cu3 2.4305(9) 1_565 y Br2 Cu3 2.4912(8) 8_665 y Br3 Cu2 2.4184(8) 8_665 y Br3 Cu1 2.4832(9) . y Br3 Cu2 2.4898(9) 1_565 y Cu1 N1 2.090(4) . y Cu2 N3 2.076(4) 3_545 y Cu2 Br3 2.4184(8) 8_655 ? Cu2 Br3 2.4898(9) 1_545 ? Cu3 N5 2.058(4) 5_566 y Cu3 Br2 2.4305(9) 1_545 ? Cu3 Br2 2.4912(8) 8_655 ? N1 C2 1.326(6) . ? N1 C6 1.333(6) . ? C2 N3 1.337(6) . ? N3 C4 1.339(6) . ? N3 Cu2 2.076(4) 3 ? C4 N5 1.342(6) . ? N5 C6 1.336(6) . ? N5 Cu3 2.058(4) 5_566 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Cu2 Br1 Cu3 103.71(3) . . y Cu2 Br1 Cu1 108.02(3) . . y Cu3 Br1 Cu1 100.95(3) . . y Cu1 Br2 Cu3 107.71(3) . 1_565 y Cu1 Br2 Cu3 100.74(3) . 8_665 y Cu3 Br2 Cu3 109.36(2) 1_565 8_665 y Cu2 Br3 Cu1 98.26(3) 8_665 . y Cu2 Br3 Cu2 101.68(2) 8_665 1_565 y Cu1 Br3 Cu2 107.41(3) . 1_565 y N1 Cu1 Br2 108.05(11) . . y N1 Cu1 Br1 102.04(12) . . y Br2 Cu1 Br1 117.76(3) . . y N1 Cu1 Br3 99.22(11) . . y Br2 Cu1 Br3 119.42(3) . . y Br1 Cu1 Br3 107.30(3) . . y N3 Cu2 Br3 106.26(11) 3_545 8_655 y N3 Cu2 Br1 103.71(12) 3_545 . y Br3 Cu2 Br1 119.27(3) 8_655 . y N3 Cu2 Br3 101.92(12) 3_545 1_545 y Br3 Cu2 Br3 115.96(3) 8_655 1_545 y Br1 Cu2 Br3 107.53(3) . 1_545 y N5 Cu3 Br2 116.65(12) 5_566 1_545 y N5 Cu3 Br1 102.10(11) 5_566 . y Br2 Cu3 Br1 111.24(3) 1_545 . y N5 Cu3 Br2 102.68(11) 5_566 8_655 y Br2 Cu3 Br2 109.04(3) 1_545 8_655 y Br1 Cu3 Br2 114.96(3) . 8_655 y C2 N1 C6 115.9(4) . . ? C2 N1 Cu1 118.6(3) . . ? C6 N1 Cu1 125.4(3) . . ? N1 C2 N3 124.8(4) . . ? C2 N3 C4 114.9(4) . . ? C2 N3 Cu2 119.9(3) . 3 ? C4 N3 Cu2 125.3(3) . 3 ? N3 C4 N5 124.9(4) . . ? C6 N5 C4 114.9(4) . . ? C6 N5 Cu3 122.3(3) . 5_566 ? C4 N5 Cu3 121.5(3) . 5_566 ? N1 C6 N5 124.6(4) . . ? _diffrn_measured_fraction_theta_max 0.897 _diffrn_reflns_theta_full 28.12 _diffrn_measured_fraction_theta_full 0.897 _refine_diff_density_max 1.219 _refine_diff_density_min -1.018 _refine_diff_density_rms 0.239 #===END data_cuitrz _audit_creation_method SHELXL-97 _chemical_name_systematic ; '1,3,5-triazine tris(copper(I) iodide)' ; _chemical_name_common 'Tri(copper(i) iodide) triazine' _chemical_formula_moiety 'C3 H3 Cu3 I3 N3' _chemical_formula_sum 'C3 H3 Cu3 I3 N3' _chemical_formula_weight 652.40 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cu' 'Cu' 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'I' 'I' -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M Pnma loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z' 'x+1/2, -y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z' '-x-1/2, y-1/2, z-1/2' _cell_length_a 6.913(4) _cell_length_b 9.777(5) _cell_length_c 15.750(9) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1064.5(10) _cell_formula_units_Z 4 _cell_measurement_temperature 150(2) _cell_measurement_reflns_used 39 _cell_measurement_theta_min 28 _cell_measurement_theta_max 32 _exptl_crystal_description 'plate' _exptl_crystal_colour 'Deep red' _exptl_crystal_size_max 0.20 _exptl_crystal_size_mid 0.14 _exptl_crystal_size_min 0.04 _exptl_crystal_density_meas 'not measured' _exptl_crystal_density_diffrn 4.071 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1152 _exptl_absorpt_coefficient_mu 14.589 _exptl_absorpt_correction_type 'numerical' _exptl_absorpt_correction_T_min 0.155 _exptl_absorpt_correction_T_max 0.569 _exptl_absorpt_process_details 'XRED (Stoe & Cie, 1997b)' _exptl_special_details ; ? ; _diffrn_ambient_temperature 150(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'STOE STADI-4 FOUR-CIRCLE DIFFRACTOMETER' _diffrn_measurement_method 'omega-theta' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 3 _diffrn_standards_interval_count ? _diffrn_standards_interval_time 60 _diffrn_standards_decay_% 'variations +/- 3.2' _diffrn_reflns_number 3125 _diffrn_reflns_av_R_equivalents 0.0366 _diffrn_reflns_av_sigmaI/netI 0.0288 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -12 _diffrn_reflns_limit_k_max 12 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 19 _diffrn_reflns_theta_min 2.59 _diffrn_reflns_theta_max 25.99 _reflns_number_total 1108 _reflns_number_gt 961 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'STADI-4 (stoe & cie, 1996a)' _computing_cell_refinement 'STADI-4 (stoe & cie, 1996a)' _computing_data_reduction 'X-RED (stoe & cie, 1996b)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL/PC (version 5.03)(Sheldrick, 1994)' _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0338P)^2^+3.109P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary 'direct methods' _atom_sites_solution_secondary 'difference Fourier synthesis' _atom_sites_solution_hydrogens 'geometrically located' _refine_ls_hydrogen_treatment 'riding model' _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1108 _refine_ls_number_parameters 61 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0371 _refine_ls_R_factor_gt 0.0293 _refine_ls_wR_factor_ref 0.0755 _refine_ls_wR_factor_gt 0.0719 _refine_ls_goodness_of_fit_ref 1.183 _refine_ls_restrained_S_all 1.183 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I1 I 0.34036(8) 0.2500 0.41842(3) 0.01041(17) Uani 1 d S . . I2 I -0.15144(5) 0.02439(4) 0.32939(2) 0.01155(16) Uani 1 d . . . Cu3 Cu -0.03277(16) 0.2500 0.40259(7) 0.0132(3) Uani 1 d S . . Cu4 Cu 0.47197(11) 0.05071(8) 0.32705(4) 0.0137(2) Uani 1 d . . . N1 N 0.3693(7) -0.1290(5) 0.3819(3) 0.0127(11) Uani 1 d . . . C1 C 0.4250(13) -0.2500 0.3505(5) 0.0137(18) Uani 1 d S . . H1 H 0.5093 -0.2500 0.3029 0.016 Uiso 1 calc SR . . N2 N 0.1823(11) -0.2500 0.4826(5) 0.0128(16) Uani 1 d S . . C3 C 0.2446(9) -0.1354(6) 0.4475(4) 0.0102(12) Uani 1 d . . . H3A H 0.1982 -0.0516 0.4702 0.012 Uiso 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I1 0.0070(3) 0.0093(3) 0.0149(3) 0.000 -0.0003(2) 0.000 I2 0.0082(2) 0.0149(2) 0.0115(2) -0.00243(14) 0.00031(13) -0.00059(14) Cu3 0.0115(6) 0.0150(5) 0.0133(5) 0.000 0.0033(4) 0.000 Cu4 0.0130(4) 0.0130(4) 0.0151(4) 0.0012(3) 0.0016(3) -0.0009(3) N1 0.013(3) 0.012(3) 0.013(2) 0.001(2) 0.002(2) -0.003(2) C1 0.014(5) 0.017(4) 0.010(4) 0.000 0.003(3) 0.000 N2 0.013(4) 0.013(4) 0.012(3) 0.000 -0.003(3) 0.000 C3 0.007(3) 0.008(3) 0.015(3) -0.002(2) -0.003(2) 0.003(2) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I1 Cu4 2.5875(12) . y I1 Cu4 2.5875(12) 7_565 ? I1 Cu3 2.5915(19) . y I2 Cu4 2.6163(17) 1_455 y I2 Cu4 2.6201(16) 6_556 y I2 Cu3 2.6206(12) . y Cu3 N2 2.083(8) 5_556 y Cu3 I2 2.6206(12) 7_565 ? Cu4 N1 2.082(5) . y Cu4 I2 2.6163(17) 1_655 ? Cu4 I2 2.6201(16) 6_656 ? N1 C1 1.339(7) . ? N1 C3 1.347(8) . ? C1 N1 1.339(7) 7 ? C3 N2 1.321(7) . ? N2 C3 1.321(7) 7 ? N2 Cu3 2.083(8) 5_556 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Cu4 I1 Cu4 97.71(5) . 7_565 y Cu4 I1 Cu3 107.25(3) . . y Cu4 I1 Cu3 107.25(3) 7_565 . ? Cu4 I2 Cu4 107.53(3) 1_455 6_556 y Cu4 I2 Cu3 103.59(4) 1_455 . y Cu4 I2 Cu3 103.25(4) 6_556 . y N2 Cu3 I1 114.2(2) 5_556 . y N2 Cu3 I2 103.09(11) 5_556 . y I1 Cu3 I2 110.73(3) . . y N2 Cu3 I2 103.09(11) 5_556 7_565 ? I1 Cu3 I2 110.73(3) . 7_565 ? I2 Cu3 I2 114.64(6) . 7_565 y N1 Cu4 I1 106.54(15) . . y N1 Cu4 I2 104.50(15) . 1_655 y I1 Cu4 I2 114.59(3) . 1_655 y N1 Cu4 I2 101.33(15) . 6_656 y I1 Cu4 I2 118.84(4) . 6_656 y I2 Cu4 I2 109.12(3) 1_655 6_656 y C1 N1 C3 115.2(6) . . ? C1 N1 Cu4 119.6(4) . . ? C3 N1 Cu4 125.2(4) . . ? N1 C1 N1 124.2(8) 7 . ? N2 C3 N1 124.7(6) . . ? C3 N2 C3 116.0(7) 7 . ? C3 N2 Cu3 121.6(4) 7 5_556 ? C3 N2 Cu3 121.6(4) . 5_556 ? _diffrn_measured_fraction_theta_max 0.902 _diffrn_reflns_theta_full 25.99 _diffrn_measured_fraction_theta_full 0.902 _refine_diff_density_max 1.120 _refine_diff_density_min -1.412 _refine_diff_density_rms 0.279 #===END data_cubrtz _audit_creation_method SHELXL-97 _chemical_name_systematic ; '1,3,5-triazine tris(copper(I) bromide)' ; _chemical_name_common 'Copper Bromide Triazine' _chemical_formula_moiety (CuBr)2(C3H3N3) _chemical_formula_sum 'C6 H6 Br4 Cu4 N6' _chemical_formula_weight 735.97 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cu' 'Cu' 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Br' 'Br' -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Hexagonal _symmetry_space_group_name_H-M P6(3)mc loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z' '-x+y, -x, z' '-x, -y, z+1/2' 'y, -x+y, z+1/2' 'x-y, x, z+1/2' '-y, -x, z' '-x+y, y, z' 'x, x-y, z' 'y, x, z+1/2' 'x-y, -y, z+1/2' '-x, -x+y, z+1/2' _cell_length_a 14.247(6) _cell_length_b 14.247(6) _cell_length_c 6.415(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 120.00 _cell_volume 1127.6(9) _cell_formula_units_Z 3 _cell_measurement_temperature 150(2) _cell_measurement_reflns_used 35 _cell_measurement_theta_min 12.0 _cell_measurement_theta_max 17.0 _exptl_crystal_description Rod _exptl_crystal_colour Orange _exptl_crystal_size_max 0.66 _exptl_crystal_size_mid 0.026 _exptl_crystal_size_min 0.024 _exptl_crystal_density_meas 'not measured' _exptl_crystal_density_diffrn 3.251 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1020 _exptl_absorpt_coefficient_mu 16.205 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.569 _exptl_absorpt_correction_T_max 0.732 _exptl_special_details ; ? ; _diffrn_ambient_temperature 150(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'STOE STADI-4 FOUR-CIRCLE' _diffrn_measurement_method omega-theta _diffrn_detector_area_resol_mean ? _diffrn_standards_number 3 _diffrn_standards_interval_count ? _diffrn_standards_interval_time 60 _diffrn_standards_decay_% 'Variation +/- 3.2' _diffrn_reflns_number 1277 _diffrn_reflns_av_R_equivalents 0.0961 _diffrn_reflns_av_sigmaI/netI 0.0738 _diffrn_reflns_limit_h_min -16 _diffrn_reflns_limit_h_max 9 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 16 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 7 _diffrn_reflns_theta_min 2.86 _diffrn_reflns_theta_max 24.96 _reflns_number_total 410 _reflns_number_gt 377 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'STADI-4 (stoe & cie, 1996a)' _computing_cell_refinement 'STADI-4 (stoe & cie, 1996a)' _computing_data_reduction 'X-RED (stoe & cie, 1996b)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL/PC (version 5.03)(Sheldrick, 1994)' _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0156P)^2^+6.912P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary 'direct methods' _atom_sites_solution_secondary 'difference Fourier synthesis' _atom_sites_solution_hydrogens 'geometrically located' _refine_ls_hydrogen_treatment 'riding model' _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.02(5) _refine_ls_number_reflns 410 _refine_ls_number_parameters 39 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0376 _refine_ls_R_factor_gt 0.0328 _refine_ls_wR_factor_ref 0.0819 _refine_ls_wR_factor_gt 0.0791 _refine_ls_goodness_of_fit_ref 1.109 _refine_ls_restrained_S_all 1.108 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Br1 Br 0.90275(7) 0.09725(7) -0.5083(2) 0.0143(4) Uani 1 d S . . Br2 Br 1.11932(12) 0.55966(6) -1.2445(3) 0.0191(4) Uani 1 d S . . Cu3 Cu 1.09367(9) 0.18734(17) -0.3857(3) 0.0176(5) Uani 1 d S . . Cu4 Cu 1.06420(15) 0.53210(7) -0.8658(4) 0.0182(5) Uani 1 d S . . N1 N 1.1445(7) 0.4515(7) -0.7612(16) 0.0128(18) Uiso 1 d . . . N2 N 1.1669(5) 0.3337(10) -0.545(2) 0.010(3) Uiso 1 d S . . C3 C 1.1075(8) 0.3763(8) -0.6094(18) 0.012(2) Uiso 1 d . . . H3 H 1.0387 0.3536 -0.5479 0.014 Uiso 1 calc R . . C4 C 1.2415(6) 0.4831(13) -0.847(3) 0.016(3) Uiso 1 d S . . H4 H 1.2638 0.5277 -0.9673 0.020 Uiso 1 calc SR . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Br1 0.0147(6) 0.0147(6) 0.0108(8) -0.0008(4) 0.0008(4) 0.0054(6) Br2 0.0132(7) 0.0229(6) 0.0179(10) -0.0019(4) -0.0038(8) 0.0066(3) Cu3 0.0197(8) 0.0210(11) 0.0124(10) 0.0036(10) 0.0018(5) 0.0105(6) Cu4 0.0161(9) 0.0131(7) 0.0265(13) 0.0004(6) 0.0008(11) 0.0081(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Br1 Cu3 2.423(3) 6_544 y Br1 Cu3 2.4847(16) . y Br1 Cu3 2.4847(16) 2_645 ? Br2 Cu4 2.394(3) 4_764 y Br2 Cu4 2.523(3) . y Cu3 N2 2.076(13) . y Cu3 Br1 2.423(3) 5_665 ? Cu3 Br1 2.4847(16) 3_765 ? Cu4 N1 2.095(9) 9 y Cu4 N1 2.095(9) . ? Cu4 Br2 2.394(3) 4_765 ? N1 C4 1.339(12) . y N1 C3 1.345(14) . y N2 C3 1.329(12) 8_755 y N2 C3 1.329(12) . ? C4 N1 1.339(12) 8_755 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Cu3 Br1 Cu3 107.34(7) 6_544 . y Cu3 Br1 Cu3 107.34(7) 6_544 2_645 ? Cu3 Br1 Cu3 107.34(12) . 2_645 ? Cu4 Br2 Cu4 93.32(7) 4_764 . y N2 Cu3 Br1 117.5(4) . 5_665 y N2 Cu3 Br1 103.5(2) . . y Br1 Cu3 Br1 109.43(7) 5_665 . y N2 Cu3 Br1 103.5(2) . 3_765 ? Br1 Cu3 Br1 109.43(7) 5_665 3_765 ? Br1 Cu3 Br1 113.54(12) . 3_765 y N1 Cu4 N1 110.3(5) 9 . y N1 Cu4 Br2 110.1(2) 9 4_765 y N1 Cu4 Br2 110.1(2) . 4_765 ? N1 Cu4 Br2 100.4(3) 9 . y N1 Cu4 Br2 100.4(3) . . ? Br2 Cu4 Br2 124.59(10) 4_765 . y C4 N1 C3 119.4(10) . . y C4 N1 Cu4 116.1(8) . . ? C3 N1 Cu4 124.4(7) . . ? C3 N2 C3 119.8(13) 8_755 . y C3 N2 Cu3 119.8(6) 8_755 . ? C3 N2 Cu3 119.8(6) . . ? N2 C3 N1 120.1(10) . . y N1 C4 N1 119.7(15) . 8_755 ? _diffrn_measured_fraction_theta_max 0.993 _diffrn_reflns_theta_full 24.96 _diffrn_measured_fraction_theta_full 0.993 _refine_diff_density_max 0.974 _refine_diff_density_min -0.954 _refine_diff_density_rms 0.199 #===END data_CU27PI _audit_creation_method SHELXL-97 _chemical_name_systematic ; '1,3,5 - triazine bis (copper(I) iodide)' ; _chemical_name_common 'Dicopper diiodide triazine' _chemical_formula_moiety 'C3 H3 Cu2 I2 N3' _chemical_formula_sum 'C3 H3 Cu2 I2 N3' _chemical_formula_weight 461.96 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cu' 'Cu' 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'I' 'I' -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M Cmc2(1) loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z+1/2' 'x, -y, z+1/2' '-x, y, z' 'x+1/2, y+1/2, z' '-x+1/2, -y+1/2, z+1/2' 'x+1/2, -y+1/2, z+1/2' '-x+1/2, y+1/2, z' _cell_length_a 15.380(4) _cell_length_b 7.7248(8) _cell_length_c 6.9130(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 821.3(2) _cell_formula_units_Z 4 _cell_measurement_temperature 150(2) _cell_measurement_reflns_used 18 _cell_measurement_theta_min 26 _cell_measurement_theta_max 28 _exptl_crystal_description Column _exptl_crystal_colour Yellow _exptl_crystal_size_max 0.54 _exptl_crystal_size_mid 0.21 _exptl_crystal_size_min 0.14 _exptl_crystal_density_meas 'not measured' _exptl_crystal_density_diffrn 3.736 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 824 _exptl_absorpt_coefficient_mu 12.621 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.025 _exptl_absorpt_correction_T_max 0.125 _exptl_absorpt_process_details 'XRED (Stoe & Cie, 1997b)' _exptl_special_details ; ; _diffrn_ambient_temperature 150(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type stadi-4 _diffrn_measurement_method omega-theta _diffrn_detector_area_resol_mean ? _diffrn_standards_number 3 _diffrn_standards_interval_count ? _diffrn_standards_interval_time 60 _diffrn_standards_decay_% 'variations +/- 1.9' _diffrn_reflns_number 2653 _diffrn_reflns_av_R_equivalents 0.1324 _diffrn_reflns_av_sigmaI/netI 0.0846 _diffrn_reflns_limit_h_min -18 _diffrn_reflns_limit_h_max 18 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 9 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 2.65 _diffrn_reflns_theta_max 25.01 _reflns_number_total 751 _reflns_number_gt 747 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'STADI-4 (Stoe & Cie, 1997a)' _computing_cell_refinement STADI-4 _computing_data_reduction 'X-RED (Stoe & Cie, 1997b)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL/PC version 5.03 (Sheldrick, 1994)' _computing_publication_material SHELXL-97 _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.0253P)^2^+0.00P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary 'direct methods' _atom_sites_solution_secondary 'difference Fourier synthesis' _atom_sites_solution_hydrogens 'geometrically located' _refine_ls_hydrogen_treatment 'riding model' _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0111(5) _refine_ls_extinction_expression 'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.03(5) _refine_ls_number_reflns 751 _refine_ls_number_parameters 50 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0263 _refine_ls_R_factor_gt 0.0257 _refine_ls_wR_factor_ref 0.0642 _refine_ls_wR_factor_gt 0.0639 _refine_ls_goodness_of_fit_ref 1.164 _refine_ls_restrained_S_all 1.163 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I1 I 0.17793(2) -0.16204(3) 0.09220(8) 0.0122(2) Uani 1 1 d . . . Cu1 Cu 0.19023(5) -0.16040(8) -0.28705(17) 0.0150(3) Uani 1 1 d . . . N1 N 0.0764(3) -0.2682(6) -0.3894(11) 0.0152(10) Uani 1 1 d . . . C1 C 0.0736(3) -0.3992(6) -0.5157(9) 0.0147(12) Uani 1 1 d . . . H1 H 0.1271 -0.4447 -0.5618 0.018 Uiso 1 1 calc R . . N2 N 0.0000 -0.4698(8) -0.5808(11) 0.0140(14) Uani 1 2 d S . . C2 C 0.0000 -0.2125(12) -0.3284(14) 0.0176(18) Uani 1 2 d S . . H2 H 0.0000 -0.1247 -0.2322 0.021 Uiso 1 2 calc SR . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I1 0.0138(3) 0.0083(3) 0.0146(3) 0.0009(4) -0.0005(2) 0.00135(10) Cu1 0.0134(4) 0.0137(6) 0.0180(5) -0.0007(5) -0.0009(4) -0.0011(3) N1 0.014(2) 0.0159(18) 0.016(3) -0.002(3) 0.004(3) 0.000(2) C1 0.014(2) 0.009(2) 0.021(3) -0.001(3) 0.000(3) 0.003(3) N2 0.018(3) 0.009(3) 0.016(3) -0.001(2) 0.000 0.000 C2 0.017(3) 0.010(4) 0.026(4) 0.009(4) 0.000 0.000 _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I1 Cu1 2.5864(10) 6_545 y I1 Cu1 2.6286(13) . y I1 Cu1 2.6337(8) 3 y Cu1 N1 2.064(5) . y Cu1 I1 2.5864(10) 6_544 y Cu1 I1 2.6337(8) 3_554 y N1 C2 1.320(7) . ? N1 C1 1.337(9) . ? C1 N2 1.334(6) . ? N2 C1 1.334(6) 4 ? C2 N1 1.320(7) 4 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Cu1 I1 Cu1 105.55(3) 6_545 . y Cu1 I1 Cu1 110.06(3) 6_545 3 y Cu1 I1 Cu1 107.84(3) . 3 y N1 Cu1 I1 109.90(15) . 6_544 y N1 Cu1 I1 106.2(2) . . y I1 Cu1 I1 112.07(4) 6_544 . y N1 Cu1 I1 102.24(15) . 3_554 y I1 Cu1 I1 117.10(4) 6_544 3_554 y I1 Cu1 I1 108.39(3) . 3_554 y C2 N1 C1 115.3(5) . . ? C2 N1 Cu1 120.9(5) . . ? C1 N1 Cu1 123.8(4) . . ? N2 C1 N1 123.8(5) . . ? C1 N2 C1 116.1(6) . 4 ? N1 C2 N1 125.7(9) 4 . ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 25.01 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 1.269 _refine_diff_density_min -1.628 _refine_diff_density_rms 0.219