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Discussion of Spectral Data

IR spectra of PhN2C2S3K and compounds 1 – 9 were recorded in the 3500 – 400 cm-1 spectral region. The assignment of ((C-N), ((C=S) and ((C-S) stretching modes in the IR spectrum of PhN2C2S3K at 1352, 1046 and 683 cm-1, respectively, is in good agreement with the vibrational data published for Bismuthiol II and similar mercapto-thiazole derivatives1, 2A comparison of the IR spectra of 1 – 8 with that of the starting material reveals the negative shift of the ((C-S) band by up to 16 cm-1 suggesting the metal coordination by the thiol group. Further coordination of the ligand through the thione group (C=S) in 5 – 7 is implied by the lowering of the ((C=S) mode by up to 15 cm-1. Conversely, the positive shift of ((C=S) (1055 – 1061 cm-1) and negative shift of ((C-N) (1340 – 1350 cm-1) modes in the spectra of 1 – 4 indicate the lack of any C=S(Sn bonding. Further spectral data for 1 – 8 as well as crystallographic analysis of 1 - 3, 7 and 8 support this interpretation.  Nevertheless, the ((C=S) mode in the spectrum of 8 is shifted to a lower frequency (1027 cm-1) despite the monodentate coordination of the ligand. The IR spectrum of 9 reveals the negative shift of both ((C=S) and ((C-S) stretching modes (1031 and 664 cm-1, respectively) which originates from N-H(((S interactions evident in the crystal structure (see below).

The Mössbauer spectra for compounds 1 – 9 have isomer shifts (i.s.) between 1.12 and 1.52 mm s-1 which confirm the +4 oxidation state of the tin atom. The quadrupole splittings (q.s.) of the mono- and diorganotin complexes of I (1 – 4) range from 1.93 to 2.85 mm s-1 suggesting different coordination geometries about tin.3 Thus, the q.s. value of 1 (1.93 mm s-1) ambiguously falls in all tetrahedral, trigonal-bipyramidal and octahedral ranges proposed for RSnX3 derivatives.3 Comparison with monoorganotin sesquisulfides, (RSnS1.5)4 containing tetrahedral RSnS3 fragments (q.s. 1.2 – 1.5 mm s-1) and stannatranes, RSn(OCH2CH2)3N containing trans-NCSnO3 units (q.s. 1.92 - 2.00 mm s-1)4 suggests an expansion of the tetrahedral coordination environment about tin in 1. The weak anisobidentate S,N- chelation of two ligands evidenced by X-ray diffraction analysis supports this interpretation. Similar additional bonding can be predicted for 2 – 4; the q.s. values of 2 (2.49 mm s-1) and 4 (2.67 mm s-1) fall close to those reported for R2Sn(2-SPy)2 (R = Ph, q.s. 2.31 and R = Me, 2.56 mm s-1)5 and Me2Sn(2-SPyNHCOCH3-5)2 (q.s. 2.73 mm s-1)6 where the S,N- chelation of the ligands is evident. Furthermore, the Mössbauer spectrum of 3 displays two doublets, the corresponding q.s. values (2.26, 2.85 mm s-1) being comparable to those found for the cis-octahedral (q.s. 2.07 mm s-1) and trans-octahedral (q.s. 3.00 mm s-1) tin centres proposed for dibuthyltin-bis(2-mercaptobenzothiazole).6 A better estimate of the coordination geometry in 2 – 4 can be derived from the calculated CSnC bond angles;7 the CSnC angles of 118( (2) and 119( (4) are in excellent agreement with the crystallographically determined value for 2 [117.7(4)(] while those calculated for 3 (105, 124() are less accurate [crystallographic data: 126.1(2) and 136.7(2)(]. 

However, all data point toward a very distorted octahedral coordination geometry about tin in 2 – 4 and evidence the presence of two slightly different coordinated metal centres in 3. The q.s. values for 5 – 9 fall in the narrow range of 2.85 – 3.15 mm s-1 consistent with a trans-trigonal bipyramidal X2SnC3 (X = N and/or S) coordination geometry around tin.3 For comparison, q.s. values of organotin thiotetrazoles (trans-NSSnC3, 3.14 - 3.35 mm s-1)8, 9 and cationic organotin adducts [R3SnD2]+ (D = 4-picoline, 2,2’-bipy, 2,2’-phen) (trans-N2SnC3, 2.80 - 2.88 mm s-1)10 fall close to the corresponding data found for 5 – 9. Such coordination geometry of the metal centre can only be achieved by axial binding of the exocyclic S atoms of the ligand (5 – 7) and/or the ring nitrogens of pyridine-based donors (8, 9).

The 119Sn NMR spectrum of 1 recorded in CDCl3 [((119Sn) -10.2 ppm] shows a lower frequency chemical shift than, for example, tetrahedral monoorganotin thiolates, RSn(SR’)3 [((119Sn) 65 – 167 ppm]11 suggesting some additional coordination about tin, but not as marked as BuSn[S(O)CPh]3 [((119Sn) -175 ppm].11 In a similar manner, the NMR data recorded in CDCl3 for 2 – 4 suggest the same weak anisobidentate chelation of I in solution. Thus, the ((119Sn) values of 2 – 4 [-84.8 (2), 59.2 (3) and 71.2 (4)] are intermediate between those of four-coordinated diorganotin dithiolates [((119Sn) 122 – 144 ppm] and six-coordinated diorganotin bis(dithiocarbamates) [e.g. Me2Sn(SCSNEt2)2, ((119Sn) -336 ppm].11, 12 Moreover, the weakness of these unsymmetric chelations is supported by the higher frequency 119Sn chemical shift of 2 - 4 when compared to those of diorganotin thiotetrazoles, R2Sn(SCN4Ph)2 [((119Sn), R = Bu, –27.7; R = Ph, –145.3 ppm]8 or thiocarboxylates, R2Sn[S(O)CPh]2 [((119Sn), R = Ph, –206; R = Bu, –97; R = Me –80 ppm],11 all revealing expanded coordination geometry about tin in solution. The angles CSnC [121.5( (3) and 116.8( (4)] calculated from 1J(Sn-C) [468.1 (3) and 448.4 Hz (4)] or 2J(Sn-C-H) [66.4 Hz (4)]13, 14 compare favourably with the corresponding values calculated from Mössbauer data and also imply that additional coordination in 2 – 4 is weak. Conversely, any intermolecular interactions in solid 5 – 8 are lost in solution and show that these compounds are all tetrahedral monomers in solution as specified by their higher frequency 119Sn chemical shift values [-62.4 (5), 120.5 (6), 126.1 (7) and 77.6 ppm (8)]. Comparison with data for solutions of organotin thiotetrazoles [((119Sn), R = alkyl, 109.8 - 122.8; R = Ph, from –65.0 to -69.4 ppm] 8, 9 or organotin trithiotriazines [((119Sn), R = alkyl, 68.3 - 74.4; R = Ph, –100.5 ppm]15 serves to endorse this interpretation. Furthermore, using the methodology of Lockhart13 and Holecek14 the values of 1J(Sn-C) (325.0 – 364.7 Hz) and 2J(Sn-C-H) (56.2 – 59.7 Hz) couplings in 6 – 8 afforded CSnC angles of 107.1 – 108.7( and 110.1 – 112.0(, respectively which are consistent with a tetrahedral coordination geometry around tin. The 119Sn NMR spectrum of 9 recorded in (CD3)2SO solution reveals a lower frequency 119Sn chemical shift value (-47.1 ppm) consistent with a trans-trigonal bipyramidal environment about tin in solution [cf. trimethyltin tetrazoles, ((119Sn) -43.8 to -49.0 ppm].16, 17 Moreover, the CSnC angles of 121.4 and 116.6( calculated from 1J(Sn-C) (509.0 Hz) and 2J(Sn-C-H) (66.3 Hz) couplings,13 respectively endorse a trigonal-planar arrangement of methyl groups about tin, although solvent coordination cannot be excluded in this instance.

The 1H and 13C NMR data for compounds 1 – 9 are largely unexceptional. However, the ( 185.3 – 187.2 (C-S) and ( 155.1 – 158.8 (C=S) values in the 13C spectra confirm the incorporation of the heterocyclic unit by comparison with the corresponding data reported for related mercaptothiolate complexes [cf. C3N3S3(SnR3)3,15 and [(C3N3S3H){Co(en)2}2][ClO4]3. 2H2O18: ( 179.7 – 188.9 ppm (C-S), ( 159.8 – 160.6 ppm (C=S)]. In addition, the 1H NMR spectrum of 9 recorded in (CD3)2SO solution shows one downfield NH2 proton signal (( 6.75 ppm vs. 6.19 ppm for 4-H2NPy) which suggest that the intermolecular N-H(((S hydrogen bonds are retained even in solution.
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