Towards co-operative reactivity in conjoint classical– organometallic heterometallic complexes: The co-ordination chemistry of novel ligands with triphenylphosphine and bis(pyridylethyl)amine or triazacyclononane domains

Scott E. Watkins, Donald C. Craig and Stephen B. Colbran*

Electronic Supplementary Information

Complex	Positive-ion ES-MS m/z found ^a $(m/z \text{ calcd}^a)$ [ion] ^{z+}	¹ H NMR solvent: $\delta_{\rm H}$	³¹ P{ ¹ H} NMR solvent; $\delta_{P} (J_{PX}/Hz)$
$[Cu(L^1)][PF_6]$	564.0 (564.0) $[Cu(L^1)]^+$	(CD ₃) ₂ CO: 8.85 (2 H, br s), 7.94 (2 H, t), 7.61 (1 H, t), 7.60–7.35 (12 H, m), 7.30–7.20 (4 H, m), 6.92 (1 H, t), 3.91 (2 H, s), 3.10–2.50 (8 H, m)	$(CD_3)_2CO: -10 \text{ (br s;}$ fwhh = 1600 Hz), -142.03 (J_{PF} 707)
$[Cu(L^2)][PF_6]$	550.0 (550.0) [Cu(L ²)] ⁺	(CD ₃) ₂ CO: 7.65–7.50 (8 H, m), 7.50–7.45 (5 H, m), 6.94 (1 H, t), 3.88 (2 H, s), 3.39 (2 H, sept), 3.15–2.55 (12 H, m), 1.47 (6 H, d), 1.13 (6 H, d)	(CD ₃) ₂ CO: -0.3 (br s; fwhh = 700 Hz), -142.00 (<i>J</i> _{PF} 707)
$[ZnCl(L^2)][PF_6]$	588.0 (588.0) $[ZnCl(L^2)]^+$	CDCl ₃ : 7.63 (1 H, m), 7.55–7.32 (12 H, m), 6.99 (1 H, t), 4.14 (2 H, s), 3.51 (2 H, sept), 3.25–3.10 (2 H, m), 3.03 (6 H, m), 2.95–2.70 (4 H, m), 1.25 (6 H, d), 1.21 (6 H, d)	CDCl ₃ : -17.71 (s), -143.76 (<i>J</i> _{PF} 707)
[PtCl(L ¹)][PF ₆]	732.0 (732.0) $[PtCl(L^1)]^+$	(CD ₃) ₂ CO: 8.67 (2 H, br s), 8.20–7.20 (18 H, br m), 7.07 (2 H, t), 4.76 (2 H, br m), 3.95 (2 H, br s), 3.29 (6 H, br m)	(CD ₃) ₂ CO: -0.78 (<i>J</i> _{PPt} 3624), -142.03 (<i>J</i> _{PF} 707)
$[PtCl(L^2)][PF_6]$	718.0 (718.0) $[PtCl(L^1)]^+$	CDCl ₃ : 7.81 (2 H, t), 7.70–7.30 (48 H, m), 6.88 (2 H, t), 4.50–3.30 (16 H, m), 3.30–2.80 (26 H, m), 1.20 (14 H, d), 0.9 (10 H, m)	CDCl ₃ : -0.71 (<i>J</i> _{PPt} 3752), -143.50 (<i>J</i> _{PF} 707)
trans-[PtCl ₂ (H ₃ L ¹) ₂](ClO ₄) ₆	1369.0 (1369.0) $[PtCl_2(HL^1)_2 + ClO_4]^+$, 635.0 ^b (635.0) $[PtCl_2(HL^1)_2]^{2+}$	CDCl ₃ : 8.98 (4 H, d), 8.74 (4 H, t), 8.21 (4 H, t), 8.10–7.00 (32 H, m), 5.05 (4 H, s), 3.58 (16 H, m)	CDCl ₃ : 18.42 (<i>J</i> _{PPt} 2567)
trans-[PtCl ₂ (HL ²) ₂][PF ₆] ₂	1387.0 (1387.0) $[PtCl_2(HL^2)_2 + PF_6]^+$, 621.0 b (621.0) $[PtCl_2(HL^2)_2]^{2+}$	(CD ₃) ₂ CO: 7.95–7.75 (10 H, m), 7.65–7.45 (14 H, m), 7.29 (2 H, t), 7.09 (2 H, q), 4.50 (4 H, s), 3.35 (4 H, sept), 3.27 (4 H, m), 3.10–2.60 (20 H, m), 1.30 (12 H, d), 1.18 (12 H, d)	(CD ₃) ₂ CO: 15.44 (<i>J</i> _{PPt} 2597), -142.05 (<i>J</i> _{PF} 707)
cis-[PtCl ₂ (L ³) ₂]	1235.0 (1235.0) $[PtCl(L^3)_2]^+$, 617.5 ^{<i>b</i>} (617.5) $[PtCl(HL^3)_2]^{2+}$	CDCl ₃ : 8.44 (4 H, d), 7.70–6.90 (40 H, br m), 3.55 (4 H, s), 2.86 (16 H, s)	CDCl ₃ : 15.03 (<i>J</i> _{PPt} 3674)

ESI Table 1. ES-MS, 300 MHz ¹H NMR and 121 MHz ${}^{31}P{}^{1}H$ NMR data for the mononuclear complexes.

ESI Table 1 continues on the next page.....

Complex	Positive-ion ES-MS ^a m/z found ^a $(m/z \text{ calcd}^a)$ [ion] ^{z+}	¹ H NMR solvent: $\delta_{\rm H}$	³¹ P{ ¹ H} NMR solvent; δ_{P} (J_{PX} /Hz)
<i>trans</i> -[PtCl ₂ (HL ⁴) ₂][PF ₆] ₂	621.0 ^{<i>b</i>} (621.0) [PtCl ₂ (HL ⁴) ₂] ²⁺	$(CD_3)_2CO: 8.10 (2 H, m), 7.90-7.60 (20 H, m), 7.60-7.20 (32 H, m), 3.92 (4 H, s), 3.56 (2 H, q), 3.39 (2 H, q), 3.13 (12 H, m), 2.89 (16 H, m), 2.73 (10 H, m), 1.09 (24 H) — includes peaks for significant benzonitrile contaminant (\approx 20 %)$	(CD ₃) ₂ CO: 22.93 (<i>J</i> _{PPt} 2643), -142.04 (<i>J</i> _{PF} 707)
trans-[IrCl(CO)(L ³) ₂] ^c	630.0 ^{<i>b</i>} (630.0) [IrCl(CO)(L ³) ₂] ²⁺	CDCl ₃ : 8.45 (4 H, d), 7.66 (10 H, br s), 7.53 (2 H, br s), 7.40 (4 H, t), 7.35–7.30 (12 H, m), 7.25–7.20 (4 H, m), 7.00 (4 H, t), 6.94 (4 H, d), 6.60 (0.001 H, d), 3.66 (4 H, s), 2.84 (16 H, s) — includes peaks for trace <i>p</i> -toluidine (≈ 0.2%)	CDCl ₃ : 24.68; thf: 25.55
$[W(CO)_5(L^3)]^d$	825.0 (825.0) [W(CO) ₅ (HL ³)] ⁺	CDCl ₃ : 8.45 (2 H, d), 7.60–7.35 (12 H, m), 7.26 (4 H, m), 7.08 (2 H, m), 6.98 (2 H, d), 3.73 (2 H, s), 2.90 (8 H, s)	CDCl ₃ : 21.49 (<i>J</i> _{PW} 243)

^{*a*} Peak for the most abundant isotopomer of each ion. ^{*b*} Half-integer spacing between isotopomer peaks for ion observed. ^{*c*} IR: v_{CO} (thf) 1965s cm⁻¹. ^{*d*} IR: v_{CO} (CDCl₃) 2071m, 1983w, 1939vs cm⁻¹.

Complex	Partial EA data (%)		I(elem	ICP-AES element ratios ^a		X-Band EPR (77 K)			<i>d</i> – <i>d</i> Bands (400–1400 nm)	
	С	Η	Ν	Cu	Pt	Р	$g_{ }$	$A_{ }/\mathrm{G}$	g_{\perp}	$\lambda_{max}/nm \ (\epsilon/M^{-1} \ cm^{-1})$
$[PtCl_2\{(L^1)Cu(OAc)\}_2](ClO_4)_2^{b}$	49.11	4.44	5.15	2.1	1.0	2.7	2.26	166	2.06	664 (300)
	(49.07)	(4.12)	(4.91)	(2)	(1)	(2)				
$[PtCl_2\{(L^2)Cu(OAc)\}_2][PF_6]_2 \cdot H_2O^{b}$	44.08	4.99	4.43	2.2	1.0	4.0	2.25	164	2.07	661 (80), 1081 (20)
	(44.17)	(5.17)	(4.68)	(2)	(1)	(4)				
$[PtCl_2\{(L^4)Cu(OAc)\}_2][PF_6]_2^{b}$	45.71	5.18	5.06	1.7	1.0	4.1	2.26	160	2.07	647 (60), 1072 (40)
	(44.62)	(5.11)	(4.73)	(2)	(1)	(4)				
$[PtCl_2\{(L^3)CuCl_2\}_2]\cdot 3H_2O^{c}$	49.61	4.25	5.16	2.6	1.0	2.2	2.23	121	2.10	776 (190), 988 (140)
	(49.79)	(4.43)	(5.28)	(2)	(1)	(2)				
$[IrCl(CO){(L3)CuCl2}_2] \cdot 6H_2O^{c}$	47.24	3.96	4.82		d		2.23	125	2.10	771 (160), 988 (120)
	(47.15)	(4.49)	(4.92)							

^{*a*} Calculated from measurements of individual element concentrations that were reproducible to $\pm 10\%$.

^b Spectra for complex in MeCN solution. ^c Spectra for complex in CHCl₃ solution. ^d Not measured (see text).

ESI Fig. 1(a). 300 MHz ¹H and 121 MHz ³¹P{¹H} (inset) nmr spectra of $[HL^{1}][PF_{6}]$ in CDCl₃ at 300 K (* diethyl ether).

ESI Fig. 1(b). 300 MHz ¹H and 121 MHz ³¹P{¹H} (inset) nmr spectra of $[Cu(L^1)][PF_6]$ in $(CD_3)_2CO$ at 300 K (* diethyl ether, † H₂O).

ESI Fig. 2(a). 300 MHz ¹H (in CDCl₃) and 121 MHz ³¹P{¹H} [inset in (CD₃)₂CO] nmr spectra of [HL²][PF₆] at 300 K (* CH₃COOH, † H₂O).

ESI Fig. 2(b). 300 MHz ¹H and 121 MHz ³¹P{¹H} (inset) nmr spectra of $[Cu(L^2)][PF_6]$ in $(CD_3)_2CO$ at 300 K (* H₂O, † acetone).

ESI Fig. 3. 300 MHz ¹H and 121 MHz ³¹P{¹H} (inset) nmr spectra of $[PtCl(L^1)][PF_6]$ in $(CD_3)_2CO$ at 300 K.

ESI Fig. 4. 300 MHz ¹H and 121 MHz ³¹P{¹H} (inset) nmr spectra of $[PtCl_2(HL^2)_2][PF_6]_2$ in $(CD_3)_2CO$ at 300 K (* acetone).

ESI Fig. 5(a). 300 MHz ¹H and 121 MHz ³¹P{¹H} (inset) nmr spectra of L³ in CDCl₃ at 300 K (* ethyl acetate).

ESI Fig. 5(b). 300 MHz ¹H and 121 MHz ³¹P{¹H} (inset) nmr spectra of $[W(CO)_5(L^3)]$ in CDCl₃ at 300 K.

ESI Fig. 6. The FTIR spectrum in the CO region of a tetrahydrofuran solution of $[W(CO)_5(L^3)]$ prior to (a) and after (b) the addition of 10 molar equivalents of $Cu(ClO_4)_2 \cdot 6H_2O$ (s).

Added metal salt	v_{CO} / cm ⁻¹ (absorbance)					
	2070 (0.015)	1939 (0.075)				
$Mn(ClO_4)_2 \bullet 6H_2O$	2071 (0.011)	1940 (0.057)				
$Fe(ClO_4)_2 \bullet 6H_2O$	2071 (0.013)	1940 (0.063)				
$Co(ClO_4)_2 \bullet 6H_2O$	2071 (0.014)	1940 (0.070)				
$Ni(ClO_4)_2 \bullet 6H_2O$	2071 (0.014)	1939 (0.072)				
$Cu(ClO_4)_2 \bullet 6H_2O$	2071 (0.014)	1940 (0.069)				
$Zn(ClO_4)_2 \bullet 6H_2O$	2071 (0.014)	1939 (0.068)				

ESI Table 3. FTIR spectral data for a solution of $[W(CO)_5(L^3)]$ in tetrahydrofuran prior to and following the addition of transition metal salts (10 molar equivalents).