Supplementary Information

Structure, Equilibrium and Ligand Exchange Dynamics in the Binary and Ternary Dioxouranium(VI)-Glyphosate-Fluoride System. A Multinuclear NMR study.

Zoltán Szabó Inorganic Chemistry, Department of Chemistry, Royal Institute of Technology (KTH), S-10044 Stockholm, Sweden

Figure S1 ¹⁹F-¹⁹F homonuclear correlation (COSY) spectrum for complex **1** in the ternary uranium(VI)-glyphosate-fluoride system measured at -5 °C using $[UO_2^{2^+}]_{tot} = 50$ mM, $[PMG]_{tot} = 100$ mM and $[F^-]_{tot} = 500$ mM at pH=9.5.

Figure S2 ¹H-¹H homonuclear correlation (COSY-45) spectrum for complex 1 in the ternary uranium(VI)-glyphosate-fluoride system measured at -5 °C using $[UO_2^{2+}]_{tot} = 20$ mM, $[PMG]_{tot} = 20$ mM and $[F^-]_{tot} = 800$ mM at pH=8.8.

Figure S3 ¹H-¹³C heteronuclear correlation spectrum for complex 1 in the ternary uranium(VI)glyphosate-fluoride system measured at -5 °C using $[UO_2^{2+}]_{tot}= 20$ mM, $[PMG]_{tot}= 20$ mM and $[F^-]_{tot}= 800$ mM at pH=8.8.

Figure S4 ${}^{1}\text{H}{}^{-31}\text{P}$ heteronuclear correlation spectrum for complex 1 in the ternary uranium(VI)glyphosate-fluoride system measured at $-5 \, {}^{\circ}\text{C}$ using $[\text{UO}_{2}{}^{2+}]_{\text{tot}} = 20 \, \text{mM}$, $[\text{PMG}]_{\text{tot}} = 20 \, \text{mM}$ and $[\text{F}^{-}]_{\text{tot}} = 800 \, \text{mM}$ at pH=8.8.

Figure S5 Proton decoupled ¹³C-NMR spectrum in the ternary uranium(VI)-glyphosate-fluoride system measured at $-5 \,^{\circ}C$ using $[UO_2^{2^+}]_{tot} = 20 \,\text{mM}$, $[PMG]_{tot} = 35 \,\text{mM}$ and $[F^-]_{tot} = 800 \,\text{mM}$ at pH=9.5. x: signals for the chelated glyphosate in complex 1, o: signals for the free glyphosate. The inset shows the carbonyl carbons.

Figure S6 Proton decoupled ³¹P-NMR spectra for the ternary uranium(VI)-glyphosate-fluoride system as a function of the total glyphosate concentration measured at -5 °C using $[UO_2^{2^+}]_{tot}=20$ mM and $[F^-]_{tot}=800$ mM at pH=8.8. The total glyphosate concentrations from top to bottom: 20.2, 38.4, 54.7, 69.5, 82.7, 94.6 and 202 mM. Star indicates the peaks from the non-chelated glyphosates in complexes 2 and 5.

Figure S7 ¹⁹F-NMR spectrum in the ternary uranium(VI)-glyphosate-fluoride system showing two coupled signals for complex 1 (134 and 128.5 ppm), and signals for the binary complexes $UO_2F_4^{2-}$ (~105 ppm) and $UO_2F_5^{3-}$ (~85 ppm). The spectrum was recorded at -5 °C using $[UO_2^{2^+}]_{tot}$ = 20 mM, $[PMG]_{tot}$ = 20.2 mM and $[F^-]_{tot}$ = 800 mM at pH=8.8

Figure S8 ¹H-NMR spectra for the ternary uranium(VI)-glyphosate-fluoride system as a function of the total glyphosate concentration measured at $-5 \,^{\circ}$ C using $[UO_2^{2^+}]_{tot}=20$ mM and $[F^-]_{tot}=800$ mM at pH=8.8. The total glyphosate concentrations are from top to bottom: 20.2, 38.4, 54.7, 69.5, 82.7, 94.6 and 202 mM. Star indicates the peaks for the non-chelated glyphosates in complexes 2 and 5.

Figure S9 ¹⁷O-NMR spectra for the ternary uranium(VI)-glyphosate-fluoride system as a function of the total glyphosate concentration measured at $-5 \,^{\circ}C$ using $[UO_2^{2^+}]_{tot}=20 \,\text{mM}$ and $[F^-]_{tot}=800 \,\text{mM}$ at pH=8.8. The total glyphosate concentrations are from top to bottom: 20.2, 38.4, 54.7, 69.5, 82.7, 94.6 and 202 mM. The peak at 1123 ppm is from the binary fluoride complexes, $UO_2F_4^{2^-}$ and $UO_2F_5^{3^-}$ present in the solution. The deconvoluted peaks are for complexes **1** (1121.3 and 1127.4 ppm) and **2** (1120.8 and 1126.8). Only one of the peaks can be resolved for complex **5** at 1125.7 ppm.

Figure S10 Equilibrium distribution diagrams for the ternary uranium(VI)-glyphosate-fluoride system as a function of the total glyphosate concentration at pH=8.8, $[UO_2^{2^+}]_{tot}=20$ mM, $[F^-]_{tot}=800$ mM (a), and as a function of the total fluoride concentration at pH=9.5, $[UO_2^{2^+}]_{tot}=20$ mM and $[PMG]_{tot}=200$ mM (b). Distribution diagram for the binary uranium(VI)-glyphosate system as a function of the total glyphosate concentration using $[UO_2^{2^+}]_{tot}=50$ mM at pH=9.6 (c). PMG: OOC-CH₂-NH-CH₂-PO₃³⁻

Figure S11 Proton decoupled ³¹P-NMR spectra for the ternary uranium(VI)-glyphosate-fluoride system as a function of the total fluoride concentration measured at $-5 \,^{\circ}$ C using $[UO_2^{2^+}]_{tot}=20 \,\text{mM}$ and $[PMG]_{tot}=200 \,\text{mM}$ at pH=9.5. The total fluoride concentrations are from top to bottom: 0, 8.4, 17.0, 34.7, 52.6, 88.9, 123.9 157.5. Star indicates the peaks for the non-chelated glyphosates in complexes 2, 4 and 5.

Figure S12 Proton decoupled ³¹P-NMR spectra for the binary uranium(VI)-glyphosate system as a function of the total glyphosate concentration measured at -5 °C, using $[UO_2^{2^+}]_{tot}=50$ mM at pH=9.6. The total glyphosate concentrations are from top to bottom: 75.0, 97.3, 123.8 157.6, 196, 257.5 and 500 mM. Star indicates the peaks for the non-chelated glyphosates in complexes 4 and 5.

Figure S13 ¹H-NMR inversion transfer experiments to study the exchange between the free and coordinated glyphosate in complex 1. The spectra were recorded at -5 °C with increasing delays after selective inversion of the CH₂ protons (at 3.3 ppm) in the free (a), and one of the CH₂ protons (at 4.4 ppm) in the coordinated glyphosate.