

Crystallization of (012) Oriented Calcite Single Crystals Underneath Monolayers of Tetra(carboxymethoxy)calix[4]arenes

Dirk Volkmer,* Marc Fricke, Dieter Vollhardt, and Stefan Siegel

* Author for correspondence

Dr. D. Volkmer
Faculty of Chemistry (AC1)
University of Bielefeld
D-33501 Bielefeld (Germany)
P.O. Box 100 131
Telephone: (+49) 521-106 6142
Fax: (+49) 521-106 6003
E-mail: *dirk.volkmmer@uni-bielefeld.de*

Synthesis

Melting points were determined with a Electrothermal melting point apparatus and were uncorrected. ^1H and ^{13}C NMR spectra were recorded on a Bruker DRX 500 spectrometer in CDCl_3 at room temperature (unless stated otherwise) with residual solvent.

Mass spectra were recorded with a Micromass VG Autospec X, Voyager DE spectrometer. Elemental analysis were carried out with a Perkin-Elmer 240 elemental analyzer. All reagents were reagent grade and used without further purification.

5,11,17,23-Tetrakis-(1,1,3,3-tetramethylbutyl)-25,26,27,28-tetrahydroxycalix[4]arene:

was prepared in 34 % yield by analogy to the standard procedure of the *t*-butylcalix[4]arene:^[1] m.p. 249–251°C (Toluol); ^1H NMR (500 MHz, 25°C, TMS: δ = 9.97 (s, 4 H, OH), 7.18–7.16 (m, 5 H, Tol), 6.99 (s, 8 H, ArH), 4.23 (s, 4 H, Ar-CH₂), 3.46 (s, 4 H, ArCH₂), 2.36 (s, 3 H, TolCH₃), 1.57 (s, 8 H, CCH₂C), 1.23 (s, 24 H, CH₃), 0.54 (s, 36 H, CH₃). ^{13}C NMR (125 MHz) δ = 146.28 (ArCO), 143.05 (ArCtOc), 129.04, 128.23, 127.61 (ArCCH₂), 126.39 (ArCH), 125.30, 57.26 (CH₂C(CH₃)₃), 37.79 (C(CH₃)₂), 32.35 (C(CH₃)₃), 32.29 ((CH₃)₂C), 31.66 ((CH₃)₃C), 31.32 (CH₂Ar), 21.47.

MS (DCI, isobutane): m/z (%) 872.4 (95) [M]⁺, 801.5 (100); elemental analysis calcd for $\text{C}_{60}\text{H}_{88}\text{O}_4 \cdot \text{C}_7\text{H}_8$: C 83.35; H 10.02; found: C 83.51, H 9.92.

5,11,17,23-Tetrakis-(1,1,3,3-tetramethylbutyl)-25,26,27,28-tetra(ethoxycarbonylmethoxy)calix[4]arene:

The product was prepared according to a slightly modified procedure.^[2] To a well-stirred suspension of 5,11,17,23-Tetrakis-(1,1,3,3-tetramethylbutyl)-25,26,27,28-tetrahydroxycalix[4]arene (14.29 g, 14.8 mmol) in anhydrous acetone (400 mL) was added ethyl bromoacetate (30 mL, 270 mmol) and potassium carbonate (34.5 g, 250 mmol). The mixture was refluxed for 4 d under an argon stream. After filtration, the filtrate was extracted with dichloromethane (3 × 50 mL). The combined organic layers were concentrated in vacuo and the residue was diluted in dichloromethane (300 mL). The solution was washed with hydrochloric acid (50 mL, 1 N) and water (3 × 100 mL). After drying over sodium sulfate, the organic layer was concentrated in vacuo. Subsequently the crude product was recrystallized from ethanol to give the desired product in 73 % yield: m.p. 143–145°C; ^1H NMR (500 MHz, 25°C, TMS: δ = 6.74 (s, 8 H, ArH), 4.82 (s, 4 H, Ar-CH₂), 4.79 (s, 8 H, OCH₂COO), 4.19 (quart, J = 7.1 Hz, 8 H, OCH₂CH₃), 3.17 (d, 3J = 13.0 Hz, 4 H, Ar-CH₂), 1.53 (s, 8 H, CCH₂C), 1.27 (t, 3J = 7.1 Hz, 12 H, OCH₂CH₃), 1.09 (s, 24 H, CH₃), 0.69 (s, 36 H, CH₃).

^{13}C -NMR (125 MHz) δ = 170.51 (COO), 153.05 (ArCO), 144.34 (ArCtOc), 133.05 (ArCCH₂), 126.14 (ArCH), 71.42 (OCH₂), 60.27 (OCH₂CH₃), 57.19 (CH₂C(CH₃)₃), 37.79 (C(CH₃)₂), 32.30 (C(CH₃)₃), 32.17 (C(CH₃)₂), 31.78 (C(CH₃)₃), 31.18 (CH₂Ar), 14.18 (CH₃).

[¹] C. D. Gutsche, B. Dhawan, K. H. No, R. Muthukrishnan, *J. Am. Chem. Soc.* **1981**, *103*, 3782–3792.

[²] F. Arnaud-Neu, E. M. Collins, M. Deasy, G. Ferguson, S. J. Harris, B. Kaitner, A. J. Lough, M. A. McKervey, E. Marques, B. L. Ruhl, M. J. Schwing Weill, E. M. Seward, *J. Am. Chem. Soc.* **1989**, *111*, 8681–8691.

MS (DCI; ammonia): m/z (%) 1234.9 (100) $[M + NH_4]^+$; elemental analysis calcd. for $C_{76}H_{112}O_{12}$: C 74.96, H 9.27; found: C 74.96, H 9.08.

5,11,17,23-Tetrakis-(1,1,3,3-tetramethylbutyl)-25,26,27,28-tetra(carboxymethoxy)calix[4]arene (1):

The product was prepared according to a slightly modified procedure.^[3] To a solution of 5,11,17,23-tetrakis-(1,1,3,3-tetramethylbutyl)-25,26,27,28-tetra(ethoxycarbonylmethoxy)calix[4]arene (1.72 g, 1.41 mmol) in tetrahydrofuran (70 mL) was added an aqueous solution of tetramethylammonium hydroxide (25 %, 36 mL, 100 mmol). After 24 h under reflux the suspension was concentrated under reduced pressure, the residue was dissolved in a 1:1 mixture of chloroform/water, washed with hydrochloric acid (2 \times 30 mL) and water (3 \times 30 mL). The organic layer was concentrated in vacuo and the crude product was recrystallized from acetonitrile (80 mL) to yield the final product in 86 % yield: m.p. 251–252°C (CH₃CN); ¹H NMR (500 MHz, 50°C, TMS): δ = 6.90 (s, 8H, ArH), 4.59 (br s, 12 H (ArCH₂, CH₂COO), 3.25 (d, ² J = 7.1 Hz, 4 H, ArCH₂), 1.96 (s, 3 H, CH₃CN), 1.55 (s, 8 H, CCH₂C), 1.14 (s, 24 H, CH₃), 0.66 (s, 36 H, CH₃).

¹³C-NMR (125 MHz) δ = 145.91 (ArCO), 132.99 (ArCtOc), 126.53 (ArCH, ArCCH₂), 72.62 (OCH₂), 57.23 (CH₂C(CH₃)₃), 37.98 (C(CH₃)₂), 32.34 (C(CH₃)₃), 31.64 (C(CH₃)₂), 31.05 (C(CH₃)₃), 30.66 (CH₂Ar), 1.91 (CH₃CN).

MALDI-MS (matrix 2,5-dihydroxybenzoic acid): m/z 1127 $[M + Na]^+$, 1141 $[M + K]^+$; elemental analysis calcd for $C_{76}H_{112}O_{12} \cdot CH_3CN$: C 73.33, H 8.70, N 1.22; found: C 73.67, H 9.05, N 1.11.

Calcium complex of 5,11,17,23-Tetrakis-(1,1,3,3-tetramethylbutyl)-25,26,27,28-tetra(carboxymethoxy)calix[4]arene (2):

5,11,17,23-Tetrakis-(1,1,3,3-tetramethylbutyl)-25,26,27,28-tetra(carboxymethoxy)calix[4]arene (55 mg, 0.05 mmol) was suspended with calcium hydroxide (7.4 mg, 0.1 mmol) in H₂O (5 mL). The suspension was treated ultrasonically and centrifuged. The pellet was suspended in H₂O (5 mL), treated ultrasonically and was centrifuged. The wet residue was dissolved in DMSO (5 mL) and crystallized at 98°C. Colourless crystals were obtained after 3 days.

¹H NMR (500 MHz, 50°C, TMS): δ = 7.07 (d, J = 19.1 Hz, 8 H, ArH), 4.27, 3.35 (dd, ² J = 12.3 Hz, 8 H, ArCH₂), 5.10, 3.96 (dd, ² J = 14.3 Hz, 8 H, CH₂COO), 1.52 (s, 8 H, CCH₂C), 1.21 (s, 24 H, CH₃), 0.48 (s, 36 H, CH₃).

¹³C-NMR (125 MHz) δ = 175.50 (COO), 150.12 (ArCO), 147.41 (ArCtOc), 134.45 (ArCCH₂), 126.72 (ArCH), 77.87 (OCH₂), 57.23 (CH₂C(CH₃)₃), 40.97 (CSO), 38.05 (C(CH₃)₂), 32.31 (C(CH₃)₃), 31.47 (C(CH₃)₂), 31.07 (C(CH₃)₃), 30.72 (CH₂Ar).

Elemental analysis calcd. for $[Ca(C_{68}H_{92}O_{12}Ca)(DMSO)_2(H_2O)] \cdot (DMSO)_{2.5}$: C 60.33, H 7.90; found: C 58.72, H 7.94.

^[3] K. Ohto, M. Yano, K. Inoue, T. Yamamoto, M. Goto, F. Nakashio, S. Shinkai, T. Nagasaki, *Anal. Sci.* **1995**, *11*, 893–902.