General procedure for the synthesis of compounds 1. To a solution of diphenylvinylphosphane (0.3 g, 1.41 mmol) in Et_2O (10 mL) was added at 0 °C a solution of the corresponding azide (1.41 mmol) in Et_2O (10 mL). Ten minutes after the end of the addition, the mixture was warmed up to room temperature and stirred for 3 h. In the cases where the appearance of a precipitate is observed, it was filtered and washed with ether (5 mL), whereas in the rest of the cases the solvent was removed under vacuum and the residue was washed with n-pentane or n-hexane to give 1.

1a (R¹ = 4-CH₃C₆H₄). White solid from *n*-hexane (0.35 g, 79%) that was recrystallized from C₆H₆/*n*-hexane (colorless prisms); mp 112-114 °C. IR (Nujol) cm⁻¹: 1508, 1322, 1110, 1044, 721, 693. ¹H NMR (CDCl₃): δ 2.16 (s, 3H, CH₃), 6.13 (ddd, ³J_{HaP} = 21.8 Hz, ³J_{HaHc} = 18.4 Hz, ²J_{HaHb} = 1.6 Hz, 1H, H_a), 6.22 (ddd, ³J_{HbP} = 36.6 Hz, ³J_{HbHc} = 12.6 Hz, ²J_{HaHb} = 1.6 Hz, 1H, H_b), 6.72 (d, *J* = 8.0 Hz, 2H, Ar), 6.76 (ddd, ²J_{HcP} = 22.4 Hz, ³J_{HaHc} = 18.4 Hz, ²J_{HbHc} = 12.6 Hz, 1H, H_c), 6.83 (d, *J* = 8.0 Hz, 2H, Ar), 7.36-7.48 (m, 6H, Ph₂), 7.70-7.78 (m, 4H, Ph₂). ¹³C { ¹H} NMR (CDCl₃): δ 20.43 (CH₃), 122.97 (d, ³J_{CP} = 18.1 Hz, C₂), 126.04 (C₄), 128.59 (d, ³J_{CP} = 11.6 Hz, C_m), 129.02 (d, ¹J_{CP} = 90.1 Hz, CH), 129.14 (d, ⁴J_{CP} = 1.5 Hz, C₃), 130.49 (d, ¹J_{CP} = 100.7 Hz, C_i), 131.56 (d, ⁴J_{CP} = 3.0 Hz, C_p), 131.91 (d, ²J_{CP} = 9.6 Hz, C_o), 134.62 (CH₂), 148.27 (d, ²J_{CP} = 3.0 Hz, C₁). ³¹P { ¹H} NMR (CDCl₃): δ -0.17. EIMS *m/z* (rel intensity): 318 (M⁺+1, 22), 317 (M⁺, 100), 183 (50). Anal. Calcd for C₂₁H₂₀NP: C, 79.48; H, 6.35; N 4.41. Found: C, 79.62; H, 6.47; N 4.25.

1b (R¹ = 4-CH₃OC₆H₄). Yellow solid (0.43 g, 92%) that was recrystallized from CH₂Cl₂/Et₂O (yellow prisms); mp 118-120 °C. IR (Nujol) cm⁻¹: 1508, 1337, 1230, 1118, 1054, 728, 696. ¹H NMR (CDCl₃): δ 3.66 (s, 3H, OCH₃), 6.14 (ddd, ${}^{3}J_{HaP}$ = 21.8 Hz, ${}^{3}J_{HaHc}$ = 18.4 Hz, ${}^{2}J_{HaHb}$ = 1.6 Hz, 1H, H_a), 6.24 (ddd, ${}^{3}J_{HbP}$ = 41.7 Hz, ${}^{3}J_{HbHc}$ = 12.5 Hz, ${}^{2}J_{HaHb}$ = 1.6 Hz, 1H, H_b), 6.45 (d, J = 9.0 Hz, 2H, Ar), 6.73 (d, J = 9.0 Hz, 2H, Ar), 6.77 (ddd, ${}^{2}J_{HcP}$ = 22.6 Hz, ${}^{3}J_{HaHc}$ = 18.4 Hz, ${}^{2}J_{HbHc}$ = 12.5 Hz, 1H, H_c), 7.41-7.48 (m, 6H, Ph₂), 7.70-7.78 (m, 4H, Ph₂). 13 C { 1 H} NMR (CDCl₃): δ 55.45 (OCH₃), 114.15 (d, ${}^{4}J_{CP}$ = 1.5 Hz, C₃), 123.60 (d, ${}^{3}J_{CP}$ = 18.1 Hz, C₂), 128.65 (d, ${}^{3}J_{CP}$ = 11.6 Hz, C_m), 129.02 (d, ${}^{1}J_{CP}$ = 90.7 Hz, CH), 130.63 (d, ${}^{1}J_{CP}$ = 100.7 Hz, C_i), 131.62 (d, ${}^{4}J_{CP}$ = 3.0 Hz, C_p), 131.96 (d, ${}^{2}J_{CP}$ = 9.6 Hz, C_o), 134.67 (CH₂), 144.37 (d, ${}^{2}J_{CP}$ = 3.0 Hz, C₁), 151.78 (C₄). 31 P { 1 H} NMR (CDCl₃): δ -0.77. EIMS m/z (rel intensity): 333 (M⁺, 70), 318 (100), 183

(23). Anal. Calcd for $C_{21}H_{20}NOP$: C, 75.66; H, 6.05; N 4.20. Found: C, 75.50; H, 6.28; N 4.29.

1c ($R^1 = 4-NO_2C_6H_4$). Yellow solid from *n*-pentane (0.43 g, 88%) that was recrystallized from CHCl₃/n-pentane (yellow prisms); mp 133-135 °C. IR (Nujol) cm⁻¹: 1635, 1587, 1446, 1302, 1185, 1114, 843, 754, 634. 1 H NMR (CDCl₃): δ 6.20 (ddd, $^{3}J_{\text{HaP}} = 22.5 \text{ Hz}, ^{3}J_{\text{HaHc}} = 18.3 \text{ Hz}, ^{2}J_{\text{HaHb}} = 1.3 \text{ Hz}, 1\text{H}, \text{H}_{a}), 6.39 \text{ (ddd, }^{3}J_{\text{HbP}} = 42.9 \text{ Hz},$ $^{3}J_{HbHc} = 12.4 \text{ Hz}, ^{2}J_{HaHb} = 1.3 \text{ Hz}, 1H, H_{b}, 6.69 \text{ (d, } J = 9.1 \text{ Hz}, 2H, Ar), 6.80 \text{ (ddd, } ^{2}J_{HcP}$ = 24.0 Hz, ${}^{3}J_{HaHc}$ = 18.3 Hz, ${}^{2}J_{HbHc}$ = 12.4 Hz, 1H, H_c), 7.46-7.60 (m, 6H, Ph₂), 7.68-7.79 (m, 4H, Ph₂), 7.92 (d, J = 9.1 Hz, Ar). ¹³C {¹H} NMR (CDCl₃): δ 122.29 (d, ³ $J_{CP} =$ 20.1 Hz, C₂), 125.53 (d, ${}^{4}J_{CP} = 2.0$ Hz, C₃), 127 (d, ${}^{1}J_{CP} = 91.5$ Hz, CH), 128.27 (d, ${}^{1}J_{CP}$ = 101.7 Hz, C_i), 129.20 (d, ${}^3J_{CP}$ = 12.3 Hz, C_m), 131.94 (d, ${}^2J_{CP}$ = 9.8 Hz, C_o), 132.62 (d, ${}^{4}J_{CP} = 2.9 \text{ Hz}, C_{p}, 136.44 \text{ (CH}_{2}), 138.00 \text{ (C}_{4}), 160.06 \text{ (d}, {}^{2}J_{CP} = 3.0 \text{ Hz}, C_{1}). {}^{31}P \{ {}^{1}H \}$ NMR (CDCl₃): δ 6.13. EIMS m/z (rel intensity): 348 (M⁺, 100), 183 (45). Anal. Calcd for C₂₀H₁₇N₂O₂P: C, 68.96; H, 4.92; N 8.04. Found: C, 70.13; H, 4.80; N 8.22. **1d** ($R^1 = NC-CH_2$). Yellow oil (0.37 g, 98%). IR (Film) cm⁻¹: 2239, 1485, 1438, 1396, 1274, 1201, 1119, 727, 699. ¹H NMR (CDCl₃): δ 3.96 (d, 2H, $^{3}J_{HP}$ = 27.6 Hz, CH₂), $6.26 \text{ (ddd, }^{3}J_{\text{HaP}} = 21.7 \text{ Hz, }^{3}J_{\text{HaHc}} = 18.4 \text{ Hz, }^{2}J_{\text{HaHb}} = 1.5 \text{ Hz, } 1\text{H, H}_{a}\text{), } 6.35 \text{ (ddd, }^{3}J_{\text{HbP}} =$ 41.5 Hz, ${}^{3}J_{HbHc} = 12.5$ Hz, ${}^{2}J_{HaHb} = 1.5$ Hz, 1H, H_b), 6.69 (ddd, ${}^{2}J_{HcP} = 23.2$ Hz, ${}^{3}J_{HaHc} =$ 18.4 Hz, ${}^{2}J_{HbHc} = 12.5$ Hz, 1H, H_c), 7.43-7.58 (m, 6H, Ph₂), 7.63-7.74 (m, 4H, Ph₂). ${}^{13}C$ {¹H} NMR (CDCl₃): δ 34.03 (d, ${}^{2}J_{CP}$ = 5.2 Hz, CH₂), 121.33 (d, ${}^{3}J_{CP}$ = 10.1 Hz, CN), 128.81 (d, ${}^{3}J_{CP} = 11.9 \text{ Hz}$, C_{m}), 129.03 (d, ${}^{1}J_{CP} = 91.9 \text{ Hz}$, CH), 129.28 (d, ${}^{1}J_{CP} = 98.7$ Hz, C_i), 131.93 (d, ${}^2J_{CP} = 9.4$ Hz, C_o), 132.02 (br s, C_p), 135.37 (CH₂). ${}^{31}P$ { ${}^{1}H$ } NMR (CDCl₃): δ 16.55. EIMS m/z (rel intensity): 266 (M⁺, 100), 183 (38). Anal. Calcd for C₁₆H₁₅N₂P: C, 72.17; H, 5.68; N 10.52. Found: C, 71.99; H, 5.80; N 10.42.

General procedures for the synthesis of compounds 2. Method A: A mixture of the corresponding vinyliminophosphorane 1 (0.45 mmol), benzene (15 mL) and the corresponding amine (10 equiv, 4.5 mmol) was stirred for 2-4 h under reflux (N_2) until disappearance of 1 (checked by TLC using silica gel glass plates deactivated with 5% Et_3N in n-hexane and AcOEt as eluent). The solvent and the excess of amine was removed in vacuo to give a yellow oily compound. Method B: A mixture of 1 (0.45 mmol), benzene (15 mL) and the corresponding amine (1.1 equiv, 0.5 mmol) was stirred for 6 h under reflux (N_2). Then the solvent was evaporated to dryness under reduced

pressure and the residue was washed with *n*-hexane to give a solid or an oil according to the case.

2a (R¹ = 4-CH₃C₆H₄, R² = R³ = CH₃). Synthetic method: A. Yellow oil (0.156 g, 96%). IR (Film) cm⁻¹: 1503, 1437, 1326, 1109, 735, 695. ¹H NMR (CDCl₃): δ 2.07 [s, 6H, (CH₃)₂N], 2.09 (s, 3H, CH₃), 2.45-2.60 (m, 4H, PCH₂CH₂N), 6.56 (d, J = 8.1 Hz, 2H, Ar), 6.74 (d, J = 8.1 Hz, 2H, Ar), 7.32-7.43 (m, 6H, Ph₂), 7.66-7.73 (m, 4H, Ph₂). ¹³C { ¹H} NMR (CDCl₃): δ 20.49 (CH₃), 26.79 (d, ¹J_{CP} = 70.2 Hz, CH₂P), 44.90 (CH₃N), 52.13 (CH₂N), 122.79 (d, ³J_{CP} = 18.0 Hz, C₂), 126.16 (C₄), 128.76 (d, ³J_{CP} = 11.6 Hz, C_m), 129.31 (C₃), 130.95 (d, ¹J_{CP} = 91.7 Hz, C_i), 131.56 (d, ²J_{CP} = 9.3 Hz, C_o), 131.57 (d, ⁴J_{CP} = 2.1 Hz, C_p), 148.51 (d, ²J_{CP} = 2.8 Hz, C₁). ³¹P { ¹H} NMR (CDCl₃): δ 5.77. EIMS m/z (rel intensity): 363 (M⁺+1, 8), 362 (M⁺, 30), 302 (30), 291 (100), 183 (50). Anal. Calcd for C₂₃H₂₇N₂P: C, 76.22; H, 7.51; N 7.73. Found: C, 76.13; H, 7.65; N 7.82.

2b [R¹ = 4-CH₃C₆H₄, R² and R³ = (CH₂)₄]. Synthetic method: B. Yellow oil (0.17 g, 97%). IR (Film) cm⁻¹: 1506, 1438, 1326, 1109, 694, 666. ¹H NMR (CDCl₃): δ 1.63 (m, 4H, CH₂CH₂CH₂CH₂), 2.10 (s, 3H, CH₃), 2.35 (m, 4H, CH₂NCH₂), 2.61-2.67 (m, 4H, PCH₂CH₂N), 6.57 (d, J = 8.0 Hz, 2H, Ar), 6.75 (d, J = 8.0 Hz, 2H, Ar), 7.33-7.45 (m, 6H, Ph₂), 7.67-7.75 (m, 4H, Ph₂). ¹³C { ¹H } NMR (CDCl₃): δ 20.53 (CH₃), 23.47 (CH₂CH₂CH₂CH₂), 28.27 (d, ¹J_{CP} = 69.0 Hz, CH₂P), 48.82 (CH₂N), 53.78 (CH₂NCH₂), 122.84 (d, ³J_{CP} = 18.2 Hz, C₂), 126.15 (C₄), 128.76 (d, ³J_{CP} = 11.4 Hz, C_m), 129.34 (C₃), 131.22 (d, ¹J_{CP} = 92.5 Hz, C_i), 131.60 (d, ⁴J_{CP} = 2.9 Hz, C_p), 131.62 (d, ²J_{CP} = 8.8 Hz, C_o), 148.62 (d, ²J_{CP} = 2.7 Hz, C₁). ³¹P { ¹H } NMR (CDCl₃): δ 5.41. EIMS m/z (rel intensity): 388 (M⁺, 30), 290 (88), 214 (40), 183 (100). Anal. Calcd for C₂₅H₂₉N₂P: C, 77.29; H, 7.52; N 7.21. Found: C, 77.41; H, 7.39; N 7.05.

2c (R¹ = 4-CH₃OC₆H₄, R² = R³ = CH₃CH₂). Synthetic method: A. Yellow oil (0.18 g, 98%). IR (Film) cm⁻¹: 1500, 1436, 1329, 1110, 827. ¹H NMR (CDCl₃): δ 0.86 (t, J= 7.1 Hz, 6H, CH₃CH₂), 2.42 (q, J= 7.1 Hz, 4H, CH₂CH₃), 2.61 (m, 2H, CH₂), 2.74 (m, 2H, CH₂), 3.67 (s, OCH₃), 6.61 (d, J= 8.7 Hz, 2H, Ar), 6.68 (d, J= 8.7 Hz, 2H, Ar), 7.41-7.50 (m, 6H, Ph₂), 7.75-7.82 (m, 4H, Ph₂). ¹³C {¹H} NMR (CDCl₃): δ 11.79 (CH₂CH₃), 24.94 (d, ¹J_{CP} = 66.7 Hz, CH₂P), 44.97 (CH₂N), 46.53 (CH₂CH₃), 55.53 (OCH₃), 114.27 (C₃), 123.40 (d, ³J_{CP} = 17.4 Hz, C₂), 128.68 (d, ³J_{CP} = 11.6 Hz, C_m), 131.44 (d, ¹J_{CP} = 93.4 Hz, C_i), 131.47 (d, ²J_{CP} = 9.3 Hz, C_o), 131.49 (d, ⁴J_{CP} = 2.7 Hz, C_p), 144.77 (d, ²J_{CP} = 2.8 Hz, C₁), 151.79 (C₄). ³¹P {¹H} NMR (CDCl₃): δ 5.56. EIMS m/z (rel intensity):

406 (M⁺, 49), 306 (98), 230 (60), 183 (100). Anal. Calcd for C₂₅H₃₁N₂OP: C, 73.87; H, 7.69; N 6.89. Found: C, 74.02; H, 7.57; N 6.75.

2d [R¹ = 4-CH₃OC₆H₄, R² and R³ = (CH₂)₅]. Synthetic method: B. Yellow solid from *n*-hexane (0.165 g, 88%). IR (Nujol) cm⁻¹: 1500, 1436, 1335, 1111, 825, 751, 717. ¹H NMR (CDCl₃): δ 1.37 [m, 2H, N(CH₂CH₂)₂CH₂], 1.50 [m, 4H, N(CH₂CH₂)₂CH₂], 2.29 [m, 4H, N(CH₂CH₂)₂CH₂], 2.53-2.73 (m, 4H, PCH₂CH₂N), 3.68 (s, 3H, OCH₃), 6.61 (d, J= 9.1 Hz, 2H, Ar), 6.66 (d, J= 9.1 Hz, 2H, Ar), 7.41-7.53 (m, 6H, Ph₂), 7.74-7.80 (m, 4H, Ph₂). ¹³C {¹H} NMR (CDCl₃): δ 24.22 [N(CH₂CH₂)₂CH₂], 25.85 [N(CH₂CH₂)₂CH₂], 25.94 (d, ¹J_{CP} = 69.3 Hz, CH₂P), 51.69 (CH₂N), 54.11 [N(CH₂CH₂)₂CH₂], 55.57 (OCH₃), 114.30 (C₃), 123.45 (d, ³J_{CP} = 17.4 Hz, C₂), 128.76 (d, ³J_{CP} = 11.4 Hz, C_m), 131.10 (d, ¹J_{CP} = 91.8 Hz, C_i), 131.61 (d, ⁴J_{CP} = 2.6 Hz, C_p), 131.62 (d, ²J_{CP} = 9.1 Hz, C_o), 144.55 (C₁), 151.84 (C₄). ³¹P {¹H} NMR (CDCl₃): δ 6.49. EIMS m/z (rel intensity): 419 (M⁺+1, 5), 418 (M⁺, 23), 318 (40), 307 (100), 183 (32). Anal. Calcd for C₂₆H₃₁N₂OP: C, 74.62; H, 7.47; N 6.69. Found: C, 74.80; H, 7.60; N 6.54.

2e (R¹ = 4-CH₃OC₆H₄, R² = H, R³ = CH₃CH₂CH₂). Synthetic method: A. Yellow oil (0.17 g, 97%). IR (Film) cm⁻¹: 3278, 1501, 1437, 1331, 1234, 1112, 826, 697. ¹H NMR (CDCl₃): δ 0.85 (t, J = 7.3 Hz, 3H, CH₂CH₂CH₃), 1.39 (sex, J = 7.3 Hz, 2H, CH₂CH₂CH₃), 1.92 (br s, 1H, NH), 2.46 (t, J = 7.3 Hz, 2H, CH₂CH₂CH₃), 2.67 (dt, 2H, ${}^3J_{\text{HH}}$ = 7.1 Hz, ${}^2J_{\text{HP}}$ = 11.3 Hz, CH₂P), 2.89 (dt, 2H, ${}^3J_{\text{HH}}$ = 7.1 Hz, ${}^3J_{\text{HP}}$ = 12.3 Hz, CH₂N), 3.68 (s, 3H, OCH₃), 6.63 (d, J = 9.2 Hz, 2H, Ar), 6.68 (d, J = 9.2 Hz, 2H, Ar), 7.42-7.54 (m, 6H, Ph₂), 7.76-7.83 (m, 4H, Ph₂). 13 C { 1 H} NMR (CDCl₃): δ 11.70 (CH₂CH₂CH₃), 23.06 (CH₂CH₂CH₃), 28.64 (d, ${}^{1}J_{\text{CP}}$ = 72.0 Hz, CH₂P), 43.17 (d, ${}^{2}J_{\text{CP}}$ = 1.3 Hz, CH₂N), 51.49 (CH₂CH₂CH₃), 55.50 (OCH₃), 114.28 (C₃), 123.27 (d, ${}^{3}J_{\text{CP}}$ = 17.8 Hz, C₂), 128.75 (d, ${}^{3}J_{\text{CP}}$ = 11.3 Hz, C_m), 131.06 (d, ${}^{1}J_{\text{CP}}$ = 90.4 Hz, C_i), 131.57 (d, ${}^{2}J_{\text{CP}}$ = 9.0 Hz, C_o), 131.59 (d, ${}^{4}J_{\text{CP}}$ = 2.6 Hz, C_p), 144.53 (d, ${}^{2}J_{\text{CP}}$ = 3.9 Hz, C₁), 151.79 (C₄). ³¹P { 1 H} NMR (CDCl₃): δ 5.80. EIMS m/z (rel intensity): 392 (M⁺, 18), 318 (34), 307 (100), 183 (44). Anal. Calcd for C₂4H₂9N₂OP: C, 73.45; H, 7.45; N 7.14. Found: C, 73.58; H, 7.34; N 7.22.

2f [R¹ = 4-NO₂C₆H₄, R² and R³ = (CH₂)₅]. Synthetic method: B. Yellow solid from *n*-hexane (0.17 g, 89%). IR (Nujol) cm⁻¹: 1500, 1436, 1335, 1111, 825, 751, 717: ¹H NMR (CDCl₃): δ 1.37 [m, 2H, N(CH₂CH₂)₂CH₂], 1.47 [m, 4H, N(CH₂CH₂)₂CH₂], 2.29 [m, 4H, N(CH₂CH₂)₂CH₂], 2.58 (m, 2H, CH₂), 2.72 (m, 2H, CH₂), 6.61 (d, *J* = 8.9 Hz,

2H, Ar), 7.49-7.59 (m, 6H, Ph₂), 7.73-7.79 (m, 4H, Ph₂) 7.90 (d, J = 8.9 Hz, 2H, Ar),. ¹³C {¹H} NMR (CDCl₃): δ 24.14 [N(CH₂CH₂)₂CH₂], 25.80 [N(CH₂CH₂)₂CH₂], 26.11 (d, $^{1}J_{CP} = 70.2$ Hz, CH₂P), 51.49 (CH₂N), 54.13 [N(CH₂CH₂)₂CH₂], 121.95 (d, $^{3}J_{CP} = 19.7$ Hz, C₂), 125.55 (C₃), 128.97 (d, $^{1}J_{CP} = 93.4$ Hz, C_i), 129.14 (d, $^{3}J_{CP} = 11.6$ Hz, C_m), 131.49 (d, $^{2}J_{CP} = 9.9$ Hz, C_o), 132.36 (d, $^{4}J_{CP} = 2.3$ Hz, C_p), 137.88 (C₄). 160.39 (d, $^{2}J_{CP} = 2.9$ Hz, C₁). ³¹P {¹H} NMR (CDCl₃): δ 11.06. EIMS m/z (rel intensity): 434 (M⁺+1, 5), 433 (M⁺, 32), 322 (100), 245 (23), 183 (65). Anal. Calcd for C₂₅H₂₈N₃O₂P: C, 69.27; H, 6.51; N 9.69. Found: C, 69.40; H, 6.60; N 9.53.

General procedure for the synthesis of compounds 4. A mixture of 1 (0.3 mmol), benzene (15 mL) and 2e (0.3 mmol) was stirred for 5 days under reflux (N₂) (checked by TLC using silica gel glass plates deactivated with 5% Et₃N in *n*-hexane and AcOEt as eluent). The solvent was evaporated to dryness under reduced pressure, and the crude product was chromatographed on silica gel deactivated with 5% Et₃N in *n*-hexane (elution with AcOEt).

4a (R¹ = 4-CH₃C₆H₄, R² = 4-CH₃OC₆H₄, R³ = CH₃CH₂CH₂). Yellow oil (0.16 g, 77%). IR (Film) cm⁻¹: 1503, 1437, 1327, 1113, 733. ¹H NMR (CDCl₃): δ 0.64 (t, J = 7.2 Hz, 3H ,CH₂CH₂CH₃), 1.05 (sex, J = 7.2 Hz, 2H, CH₂CH₂CH₃), 2.14 (s, 3H, CH₃), 2.15 (m, 2H, CH₂CH₂CH₃), 2.44 (m, 4H, CH₂), 2.64 (m, 4H, CH₂), 3.62 (s, 3H, OCH₃), 6.56-6.65 (m, 6H, Ar), 6.79 (d, J = 7.8 Hz, 2H, Ar), 7.38-7.52 (m, 12H, Ph₂), 7.62-7.79 (m, 8H, Ph₂). ¹³C {¹H} NMR (CDCl₃): δ 11.69 (CH₂CH₂CH₃), 20.21 (CH₂CH₂CH₃), 20.54 (CH₃), 24.82 (d, ¹J_{CP} = 65.9 Hz, CH₂P), 24.90 (d, ¹J_{CP} = 66.1 Hz, CH₂P), 45.47 (2 CH₂N), 55.57 (OCH₃), 55.61 (CH₂CH₂CH₃), 114.38 (C₃), 122.78 (d, ³J_{CP} = 18.0 Hz, C₂(2), 123.39 (d, ³J_{CP} = 17.5 Hz, C₂(2), 126.11 (C₄), 128.73 (d, ³J_{CP} = 11.5 Hz, 2 C_m), 129.37 (C₃·), 131.45 (d, ¹J_{CP} = 93.3 Hz, C_i), 131.53 (d, ²J_{CP} = 9.0 Hz, 2 C_o), 131.54 (m, 2 C_p), 131.60 (d, ¹J_{CP} = 93.4 Hz, C_i), 144.87 (br s, C₁), 148.76 (d, ²J_{CP} = 2.6 Hz, C₁·), 151.86 (C₄). ³¹P {¹H} NMR (CDCl₃): δ 5.16, 5.52. FAB⁺-MS m/z (rel intensity): 710 (M⁺+1, 16), 709 (M⁺, 12), 307 (63), 291 (100), 185 (36), 183 (17). Anal. Calcd for C₄₅H₄₉N₃OP₂: C, 76.14; H, 6.96; N 5.92. Found: C, 76.27; H, 7.09; N 5.78.

4b (R¹ = R² = 4-CH₃OC₆H₄, R³ = CH₃CH₂CH₂). Yellow oil (0.174 g, 80%). IR (Film) cm⁻¹: 1499, 1437, 1330, 1264, 1232, 1112, 912, 827, 697. ¹H NMR (CDCl₃): δ 0.64 (t, J = 7.3 Hz, 3H, CH₂CH₂CH₃), 1.09 (sex, J = 7.3 Hz, 2H, CH₂CH₂CH₃), 2.13 (m, 2H, CH₂CH₂CH₃), 2.44 (m, 4H, CH₂), 2.65 (m, 4H, CH₂), 3.64 (s, 6H, OCH₃), 6.57 (d, J =

8.6 Hz, 4H, Ar), 6.62 (d, J = 8.6 Hz, 4H, Ar), 7.37-7.50 (m, 12H, Ph₂), 7.64-7.75 (m, 8H, Ph₂). ¹³C { ¹H} NMR (CDCl₃): δ 11.73 (CH₂CH₂CH₃), 20.23 (CH₂CH₂CH₃), 24.81 $(d, {}^{1}J_{CP} = 65.7 \text{ Hz}, CH_{2}P), 45.50 (CH_{2}N), 55.59 (OCH_{3}), 55.61 (CH_{2}CH_{2}CH_{3}), 114.41$ (C_3) , 123.42 (d, ${}^3J_{CP} = 17.4$ Hz, C_2), 128.76 (d, ${}^3J_{CP} = 11.5$ Hz, C_m), 131.53 (d, ${}^1J_{CP} =$ 93.4 Hz, C_i), 131.55 (d, ${}^4J_{CP} = 2.9$ Hz, C_p), 131.56 (d, ${}^2J_{CP} = 9.0$ Hz, C_o), 144.78 (d, ${}^2J_{CP}$ = 3.3 Hz, C_1), 151.92 (C_4). ³¹P {¹H} NMR (CDCl₃): δ 6.18. FAB⁺-MS m/z (rel intensity): 726 (M⁺+1, 12), 725 (M⁺, 8), 307 (100), 185 (52), 183 (23). Anal. Calcd for C₄₅H₄₉N₃O₂P₂: C, 74.46; H, 6.80; N 5.79. Found: C, 74.59; H, 6.67; N 5.90. **4c** ($R^1 = R^2 = 4$ -CH₃OC₆H₄, $R^3 = C_6H_5$ CH₂). Yellow oil (0.167 g, 72%). IR (Film) cm⁻¹: 1502, 1438, 1329, 1265, 1231, 1113, 909, 834, 694. 1 H NMR (CDCl₃): δ 2.48 (m, 4H, CH₂), 2.70 (m, 4H, CH₂), 3.38 (s, 2H, CH₂Ph), 3.64 (s, 6H, OCH₃), 6.57 (br s, 8H, Ar), 6.90-6.95 (m, 2H, Ph), 7.10-7.14 (m, 3H, Ph), 7.38-7.53 (m, 12H, Ph₂), 7.58-7.69 (m, 8H, Ph₂). ¹³C { ¹H} NMR (CDCl₃): δ 25.12 (d, ¹ J_{CP} = 65.6 Hz, CH₂P), 45.75 (CH₂N), 55.54 (OCH₃), 58.39 (CH₂Ph), 114.37 (C₃), 123.39 (d, ${}^{3}J_{CP}$ = 17.5 Hz, C₂), 126.91, 128.18, 128.72 (d, ${}^{3}J_{CP}$ = 11.2 Hz, C_{m}), 131.46 (d, ${}^{2}J_{CP}$ = 9.0 Hz, C_{o}), 131.47 (d, ${}^{4}J_{CP}$ = 2.9 Hz, C_p), 131.51 (d, ${}^{1}J_{CP}$ = 93.8 Hz, C_i), 138.37 (q), 144.74 (br s, C_1), 151.85 (C_4), and one not observable CH. ^{31}P { ^{1}H } NMR (CDCl₃): δ 5.91. FAB $^{+}$ -MS m/z (rel intensity): 774 (M⁺+1, 15), 773 (M⁺, 6), 334 (100), 307 (94), 185 (40), 183 (26). Anal. Calcd for C₄₉H₄₉N₃O₂P₂: C, 76.05; H, 6.38; N 5.43. Found: C, 75.91; H, 6.48; N 5.55.

Synthesis tris(iminophosphorane) of 6. To a solution of tris(diphenylphosphinoethyl)amine (0.2 g; 0.31 mmol) in CH₂Cl₂ (15 mL) was added a solution of 4-tolylazide (0.04 g, 0.31 mmol) in CH₂Cl₂ (5 mL). The mixture was stirred for 1.5 h at room temperature (checked by IR until the disappearance of the band of N₃). The solvent was evaporated to dryness under reduced pressure, and the residue was triturated with *n*-hexane. Yellow crystalline **6** was isolated by filtration and dried under vacuum. Yield (0.27 g, 90%); IR (Nujol) cm⁻¹: 1605, 1504, 1439, 1325, 1109. ¹H NMR (CDCl₃): δ 2.14 (s, 3H, CH₃), 2.27 (m, 2H, CH₂), 2.46 (m, 2H, CH₂), 6.56 (d, J = 8.0 Hz, 2H, Ar), 6.74 (d, J = 8.0 Hz, 2H, Ar), 7.35-7.49 (m, 6H, Ph₂), 7.58-7.65 (m, 4H, Ph₂). ¹³C {¹H} NMR (CDCl₃): δ 20.58 (CH₃), 25.21 (d, ¹ J_{CP} = 64.4 Hz, CH₂P), 45.74 (CH₂N), 122.73 (d, ${}^{3}J_{CP} = 18.0 \text{ Hz}$, C₂), 126.04 (C₄), 128.72 (d, ${}^{3}J_{CP} = 11.6 \text{ Hz}$, C_m), 129.45 (C₃), 131.49 (d, ${}^{2}J_{CP} = 8.7 \text{ Hz}$, C_o), 131.49 (C_n), 131.53 (d, ${}^{1}J_{CP} = 94.5 \text{ Hz}$, C_i), 148.86 (C₁). ^{31}P { ^{1}H } NMR (CDCl₃): δ 5.39. EIMS m/z (rel intensity): 969 (M $^{+}$ +1, 10),

330 (100), 291 (45), 223 (90), 185 (32), 183 (22). Anal. Calcd for C₆₃H₆₃N₄P₃: C, 78.08; H, 6.55; N, 5.78. Found: C, 78.21; H, 6.68; N 5.68.

Synthesis of compound 9b. A mixture of the iminophosphorane 1d (0.27 g, 1 mmol), diphenylphosphane (0.19 g, 1 mmol) and potassium tert-butoxide (0.01 g, 0.1 mmol) in dry THF was stirred at 25 °C for 0.5 h under nitrogen atmosphere. The solvent was removed under vacuum and the residue was chromatographed on silica gel deactivated with 5% Et₃N in *n*-hexane (elution with AcOEt) to give **9b** as a white solid from Et₂O (0.1 g, 47%). IR (Nujol) cm⁻¹: 1436, 1220, 1184, 1164, 1118, 727. ¹H NMR (CDCl₃): δ 2.19 (m, 2H, CH₂P), 2.38 (s, 2H, CH₂P), 3.87 (d, ${}^{3}J_{HP}$ = 27.3 Hz, 2H, CH₂N), 7.28-7.35 (m, 10H, Ph₂), 7.42-7.59 (m, 10H, Ph₂). 13 C { 1 H} NMR (CDCl₃): δ 19.23 [dd, 1 J_{CP(III)} = 15.1 Hz, ${}^{2}J_{CP(V)} = 4.2$ Hz, $CH_{2}P(III)$], 25.92 [dd, ${}^{1}J_{CP(V)} = 69.6$ Hz, ${}^{2}J_{CP(III)} = 16.7$ Hz, $CH_2P(V)$], 33.88 (d, ${}^2J_{CP(V)} = 5.9$ Hz, CH_2N), 121.40 (d, ${}^3J_{CP(V)} = 10.2$ Hz, CN), 128.60 $(d, {}^{3}J_{CP(III)} = 6.8 \text{ Hz}, C_m), 128.71 (d, {}^{3}J_{CP(V)} = 11.9 \text{ Hz}, C_m), 129.07 (C_p), 131.81 (d, {}^{3}J_{CP(V)} = 11.9 \text{ Hz}, C_m)$ $^{2}J_{\text{CP(V)}} = 9.3 \text{ Hz}, C_{o}$, 131.83 (d, $^{4}J_{\text{CP(V)}} = 2.8 \text{ Hz}, C_{p}$), 132.60 (d, $^{1}J_{\text{CP(V)}} = 95 \text{ Hz}, C_{i}$), 132.77 (d, ${}^{2}J_{CP(III)} = 18.5 \text{ Hz}$, C_{o}), 137.39 (d, ${}^{1}J_{CP(III)} = 13.4 \text{ Hz}$, C_{i}). ${}^{31}P$ { ${}^{1}H$ } NMR (CDCl₃): δ -11.42 [d, ${}^{3}J_{PP}$ = 46.3 Hz, P(III)], 24.63 [d, ${}^{3}J_{PP}$ = 46.3 Hz, P(V)]. EIMS m/z(rel intensity): 452 (M⁺, 52), 253 (23), 239 (86), 212 (73), 183 (100). Anal. Calcd for C₂₈H₂₆N₂P₂: C, 74.33; H, 5.79; N 6.19. Found: C, 74.18; H, 5.65; N 6.32.

Synthesis of compound 10. To a dry benzene solution (10 mL) of 1b (0.1 g, 0.3 mmol) was added thiophenol (0.033 g, 0.3 mmol) in dry benzene (5 mL) under nitrogen atmosphere. The solution was stirred at 25 °C for 10 min. The solvent was removed under vacuum and the residue was washed with dry *n*-pentane to give 10 as a colorless oil in quantitative yield. IR (Film) cm⁻¹: 1588, 1505, 1435, 1331, 1114, 830, 736, 698.

¹H NMR (CDCl₃): δ 2.72 (m, 2H, CH₂), 3.07 (m, 2H, CH₂), 3.67 (s, 3H, OCH₃), 6.59-6.70 (m, 2H, Ph), 6.65 (d, J = 3.6 Hz, 2H, Ar), 7.06-7.16 (m, 3H, Ph), 7.14 (d, J = 3.6 Hz, 2H, Ar), 7.32-7.44 (m, 6H, Ph₂), 7.66-7.61 (m, 4H, Ph₂).

¹³C {

¹H} NMR (CDCl₃): δ 26.05 (d, ${}^{2}J_{CP}$ = 2.1 Hz, CH₂S), 28.58 (d, ${}^{1}J_{CP}$ = 63.2 Hz, CH₂P), 55.60 (OCH₃), 114.56 (C₃), 123.58 (d, ${}^{3}J_{CP}$ = 17.3 Hz, C₂), 124.19 (C₄'), 128.86 (d, ${}^{3}J_{CP}$ = 11.6 Hz, C_m), 129.05 (C₂'/C₃'), 129.14 (C₂'/C₃'), 131.01 (d, ${}^{1}J_{CP}$ = 93.0 Hz, C_i), 131.57 (d, ${}^{2}J_{CP}$ = 9.1 Hz, C_o), 131.76 (d, ${}^{4}J_{CP}$ = 2.8 Hz, C_p), 135.07 (C₁'), 144.46 (d, ${}^{2}J_{CP}$ = 2.6 Hz, C₁), 152.20 (C₄).

³P {

¹H} NMR (CDCl₃): δ 4.97. EIMS m/z (rel intensity): 443 (M⁺, 25),

333 (63), 318 (72), 307 (100), 183 (51). Anal. Calcd for $C_{27}H_{26}NOPS$: C, 73.11; H, 5.91; N 3.16. Found: C, 73.23; H, 5.80; N 3.80.