Monohapto-allyl Pd(II) complexes with bidentate hybrid P,N ligands[†]

Pierre Braunstein,^a Jing Zhang^a and Richard Welter^b

- Laboratoire de Chimie de Coordination, UMR CNRS 7513, Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cédex, France. E-mail: braunst@chimie.u-strasbg.fr
- Laboratoire DECMET, UMR CNRS 7513, Université Louis Pasteur, 4 rue Blaise Pascal,
 F-67070 Strasbourg Cédex, France

Complex [Pd(η¹-C₃H₅}CI(NOPMe²-*N,P*)] 1: the ligand NOP^{Me²} (0.370 g, 1.08 mmol) and [Pd(η³-C₃H₅)(μ-Cl)]₂ (0.200 g, 0.055 mmol) were dissolved in CH₂Cl₂ (20 mL). The yellow solution was stirred for 1 h at room temperature, and the solvent was removed under vacuum. The residue was treated with pentane (30 mL), the off-white solid thus obtained was washed with pentane (2x20 mL) and dried under vacuum, to afford 1 (0.51 g, 89%). Spectroscopic data: IR (CH₂Cl₂): 1636 (s, v(CN)) cm⁻¹. ¹H NMR (400.13 MHz, toluene- d_8 , 233 K): δ 1.56 (s, 6H, NC(CH₃)₂), 1.59 (s, 6H, OC(CH₃)₂), 3.00 (br, 2H, Pd-CH₂), 3.23 (s, 2H, OCH₂), 4.21 (d, 1H, 3 J_{HH} = 16.4 Hz, =CH*H* trans to –CH=), 4.73 (d, 1H, 3 J_{HH} = 8.0 Hz, =C*H*H cis to –CH=), 6.89 (m, 1H, –CH=), 7.03-7.07 (m, 6H, aromatic H), 7.55-7.60 (m, 4H, aromatic H). 13 C{ 1 H} NMR (100 MHz, toluene- d_8 , 233 K): δ 27.3 (s, NC(CH₃)₂), 27.7 (d, 3 J_{PC} = 5.0 Hz, OC(CH₃)₂), 29.5 (br, Pd-CH₂-), 70.0 (s, NC(CH₃)₂), 76.8 (s, OC(CH₃)₂), 80.9 (s, OCH₂), 105.9 (br, =CH₂), 127.3-128.1(overlapping d for toluene and *m*-aryl), 131.2 (s, *p*-aryl), 132.5 (d, 2 J_{PC}=13.8 Hz, *o*-aryl), 134.5 (d, 1 J_{PC} = 54.7 Hz, *ipso*-aryl), 141.0 (br, CH=), 168.8 (d, 3 J_{PC} = 4.0 Hz, C=N). 31 P{ 1 H} NMR (121.5 MHz, CD₂Cl₂): δ 115.1(s). Anal. Found: C, 52.55; H, 5.45; N, 2.55. Calcd. for C₂₃H₂₉CINO₂PPd: C, 52.77; H, 5.59; N, 2.68%.

Complex $[Pd(\eta^3-C_3H_5)(NOP^{Me2}-N,P)]PF_6$ 4: the ligand NOP^{Me2} (0.220 g, 0.65) mmol) and $[Pd(\eta^3-C_3H_5)(\mu-Cl)]_2$ (0.120 g, 0.32 mmol) were dissolved in CH_2Cl_2 (20 mL). The yellow solution was stirred for 1 h at room temperature, then solid NH₄PF₆ (0.110 g, 0.67 mmol) was added and the mixture was stirred for another 3 h and filtered. The filtrate was taken to dryness under vacuum and the residue was treated with pentane (30 mL), the offwhite solid thus obtained was washed with pentane (2x20 mL) and dried under vacuum to afford 4 (0.320 g, 78%). Spectroscopic data: IR(CH₂Cl₂): 1630 (s, v(CN)) cm⁻¹. ¹H NMR (300.13 MHz, CDCl₃, rom temp.): δ 1.31 (s, 6H, NC(CH₃)₂), 1.71 (s, 3H, OC(CH₃)(CH₃)), 1.79 (s, 3H, OC(C H_3)(C H_3)), 2.89 (d, 1H, $^3J_{HH}$ = 12.3 Hz, allylic H cis to P), 3.69 (d, 1H, $^3J_{HH}$ = 6.9 Hz, allylic H cis to P), 3.92 (dd, 1H, $^{3}J_{HH}$ = 11.1 Hz, $^{3}J_{PH}$ = 14.1 Hz allylic H trans to P), AB spin system: δ_A 4.32 (d, 1H, ${}^2J_{HH}$ = 9 Hz, OCH*H*), δ_B 4.34 (d, 1H, ${}^2J_{HH}$ = 9Hz, OC*H*H), 5.13 (ddd, 1H, ${}^{3}J_{HH} = 6.4 \text{ Hz}$, ${}^{3}J_{PH} = 9.3 \text{ Hz}$, ${}^{4}J_{HH} = 1.8 \text{ Hz}$, allyl H trans to P), 5.86 (m, 1H, -CH=), 7.42-7.53 (m, 10H, aryl). ${}^{13}C{}^{1}H{}$ NMR (125.8 MHz, CD₂Cl₂, room temp.): δ 27.5 (s, $NC(CH_3)(CH_3)$, 27.7 (d, ${}^3J_{PC} = 6.3$ Hz, $OC(CH_3)(CH_3)$), 27.8 (s, $NC(CH_3)(CH_3)$), 28.3 (d, $^{3}J_{PC} = 6.3$ Hz, OC(CH₃)(CH₃)), 55.3 (d, $^{3}J_{PC} = 3.6$ Hz, allylic CH₂ cis to P), 69.8 (s, NC(CH₃)₂), 79.2 (d, ${}^{3}J_{PC} = 2.5$ Hz, OC(CH₃)₂), 79.9 (d, ${}^{3}J_{PC} = 32.6$ Hz, allylic CH₂ trans to P), 80.6 (s, OCH₂), 120.9 (d, ${}^{3}J_{PC}$ = 6.9 Hz, allylic CH), 129.3 (d, ${}^{3}J_{PC}$ = 11.5 Hz, m-aryl), 131.0 (d, ${}^{2}J_{PC}$ = 15.4 Hz, o-aryl), 131.6 (d, ${}^{2}J_{PC} = 15.9$ Hz, o-aryl), 132.4 (d, ${}^{4}J_{PC} = 2.4$ Hz, p-aryl), 132.6 (d, $^{4}J_{PC} = 2.3 \text{ Hz}$, p-aryl), 133.7 (d, $^{1}J_{PC} = 53.6 \text{ Hz}$, ipso-aryl), 134.4 (d, $^{1}J_{PC} = 51.6 \text{ Hz}$, ipso-aryl), 141.0 (br, CH=), 168.8 (d, ${}^{3}J_{PC}$ = 4.0 Hz, C=N). ${}^{31}P\{{}^{1}H\}$ NMR (121.5MHz, CDCl₃): δ 118.3 (s, OP), -143.0 (sept, PF₆). Anal. Found: C, 43.35; H, 4.50; N, 2.20. Calcd. for C₂₃H₂₉F₆NO₂P₂Pd: C, 43.59; H, 4.61; N, 2.21%.

Complex [Pd{C(O)C₃H₅}Cl(NOP^{Me2}-*N,P*)] **5**: CO was bubbled through a solution of **1** (0.573 g, 1.09 mmol) in toluene (50 mL) at room temperature for 1 h. After filtration and removal of the volatiles under vacuum, the residue was washed with pentane (3x20 mL) and dried under vacuum, to afford **5** as a pale-yellow powder (0.550 g, 91% yield). Spectroscopic data: IR(CH₂Cl₂): 1688 (s, v(CO)), 1638 (s, v(CN)) cm⁻¹. ¹H NMR (300.13 MHz, CDCl₃, room temp.): δ 1.44 (s, 6H, NC(CH₃)₂), 1.99 (s, 6H, OC(CH₃)₂), 3.26 (dt, 2H, ${}^{3}J_{HH} = 7.1$ Hz, ${}^{4}J_{HH} = 1.2$ Hz, C(O)CH₂), 3.87 (s, 2H, OCH₂), 4.57 (dd, 1H, ${}^{3}J_{HH} = 15.2$ Hz, ${}^{2}J_{HH} = 2.0$ Hz, ${}^{4}J_{HH} = 1.2$ Hz, =CHH trans to -CH=), 4.86 (dm, 1H, ${}^{3}J_{HH} = 10.1$ Hz, =CHH cis to -CH=), 5.68 (m, 1H, -CH=), 7.41-7.46 (m, 6H, aromatic H), 7.65-7.72 (m, 4H, aromatic H). 13 C{ 1 H} NMR (75.47 MHz, CD₂Cl₂): δ 27.3(s, NC(CH₃)₂), 28.1 (d, ${}^{3}J_{PC} = 5.2$ Hz, OC(CH₃)₂), 56.6 (d, ${}^{3}J_{PC} = 21.6$ Hz, C(O)CH₂), 70.0 (s, NC(CH₃)₂), 77.5 (s, OC(CH₃)₂), 81.3 (s, OCH₂), 117.0 (s, =CH₂), 128.7 (d, ${}^{3}J_{PC} = 11.3$ Hz, m-aryl), 131.3 (d, ${}^{2}J_{PC} = 14.9$ Hz, o-aryl), 131.5 (s, p-aryl), 131.9 (s, CH=), 135.1 (d, ${}^{1}J_{PC} = 52.8$ Hz, ipso-aryl), 169.7 (d, ${}^{3}J_{PC} = 2.9$ Hz, C=N), 226.7 (d, ${}^{2}J_{PC} = 10.0$ Hz, C=O). 31 P{ 1 H} NMR (121.5 MHz, CDCl₃): δ 100.8(s). Anal. Found: C, 52.10; H, 5.30; N, 2.45. Calcd. for C₂₄H₂₉ClNO₃PPd: C, 52.19; H, 5.29; N, 2.54%.

Complex [Pd{C(O)C₃H₅}Cl(NOPON^{Me2}-*N,P*)] 6: CO was bubbled through a solution of **2** (0.500 g, 0.829 mmol) in toluene (40 mL) at room temperature for 1 h. After filtration and removal of the volatiles under vacuum, the residue was washed with pentane (2x20 mL) and dried under vacuum, to afford **6** as off-white powder(0.42g, 80% yield). Spectroscopic data: IR(CH₂Cl₂): 1692 (s, v(CO)), 1661(m, v(CN) of uncoordinated oxazoline), 1637 (s, v(CN) of coordinated oxazoline) cm⁻¹. ¹H NMR (300.13 MHz, C₆D₆, room temp.): δ 1.11 (s, 6H, NC(CH₃)(CH₃)), 1.26 (br s, 6H, NC(CH₃)(CH₃)), 1.51 (s, 6H, OC(CH₃)(CH₃)), 1.72 (s, 6H, OC(CH₃)(CH₃)), AB spin system: δ _A 3.40 (2H, OCH*H*), δ _B 3.43 (2H, OC*H*H), 4.01 (d, 2H, ³J_{HH} = 6.9 Hz, C(O)CH₂), 5.02 (d, 2H, ³J_{HH} = 11.7 Hz, =CH₂), 6.34

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2003

(m, 1H, -CH=), 7.02-7.07 (m, 3H, aromatic H), 7.86-8.13 (m, 2H, aromatic H). 13 C{ 1 H} NMR (75.47 MHz, C₆D₆): δ 27.3-28.0 (overlapping d and s, OC(*C*H₃)₂ and NC(*C*H₃)₂), 56.3 (d, $^{3}J_{PC}$ = 25.9 Hz, C(O)*C*H₂), 68.6 (br, N*C*(CH₃)₂), 79.4 (s, O*C*(CH₃)₂), 80.0 (s, OCH₂), 116.6 (s, =CH₂), 129.4 (d, $^{3}J_{PC}$ = 11.1 Hz, *m*-aryl), 130.8 (d, $^{2}J_{PC}$ = 15.3 Hz, *o*-aryl), 131.3 (s, *p*-aryl), 133.5 (s, -CH=), 137.7 (d, $^{1}J_{PC}$ = 42.3 Hz, *ipso*-aryl), 167.0 (br, C=N), 221.4 (d, $^{2}J_{PC}$ = 16.8 Hz, C=O). 31 P{ 1 H} NMR (121.5 MHz, CDCl₃): δ 118.4(s). Anal. Found: C, 49.15; H, 6.00; N, 4.35. Calcd. for C₂₆H₃₈ClN₂O₅PPd: C, 49.46; H, 6.07; N, 4.44%.