Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2003 data_global _journal_coden_Cambridge 222 loop_ _publ_author_name 'David Haddleton' 'Simon Harrisson' 'Jeetan Lad' 'Giuseppe Mantovani' _publ_contact_author_name 'Prof David Haddleton' _publ_contact_author_address ; University of Warwick Department of Chemistry Coventry CV4 7AL UNITED KINGDOM ; _publ_contact_author_email D.M.HADDLETON@WARWICK.AC.UK _publ_requested_journal 'Dalton Transactions' _publ_section_title ; Copper Mediated Living Radical Polymerisation: Mechanistic Considerations ; data_gm3f _database_code_CSD 208056 _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C16 H20 Br Cu N4' _chemical_formula_weight 411.81 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Br Br -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Orthorhombic _symmetry_space_group_name_H-M Fddd loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' '-x, y, -z' 'x, -y, -z' '-x+1/4, -y+1/4, -z+1/4' 'x+1/4, y+1/4, -z+1/4' 'x+1/4, -y+1/4, z+1/4' '-x+1/4, y+1/4, z+1/4' 'x, y+1/2, z+1/2' '-x, -y+1/2, z+1/2' '-x, y+1/2, -z+1/2' 'x, -y+1/2, -z+1/2' '-x+1/4, -y+3/4, -z+3/4' 'x+1/4, y+3/4, -z+3/4' 'x+1/4, -y+3/4, z+3/4' '-x+1/4, y+3/4, z+3/4' 'x+1/2, y, z+1/2' '-x+1/2, -y, z+1/2' '-x+1/2, y, -z+1/2' 'x+1/2, -y, -z+1/2' '-x+3/4, -y+1/4, -z+3/4' 'x+3/4, y+1/4, -z+3/4' 'x+3/4, -y+1/4, z+3/4' '-x+3/4, y+1/4, z+3/4' 'x+1/2, y+1/2, z' '-x+1/2, -y+1/2, z' '-x+1/2, y+1/2, -z' 'x+1/2, -y+1/2, -z' '-x+3/4, -y+3/4, -z+1/4' 'x+3/4, y+3/4, -z+1/4' 'x+3/4, -y+3/4, z+1/4' '-x+3/4, y+3/4, z+1/4' _cell_length_a 12.6388(19) _cell_length_b 22.178(6) _cell_length_c 25.069(6) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 7027(3) _cell_formula_units_Z 16 _cell_measurement_temperature 180(2) _cell_measurement_reflns_used 5457 _cell_measurement_theta_min 3 _cell_measurement_theta_max 20 _exptl_crystal_description block _exptl_crystal_colour brown _exptl_crystal_size_max 0.40 _exptl_crystal_size_mid 0.20 _exptl_crystal_size_min 0.20 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.557 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 3328 _exptl_absorpt_coefficient_mu 3.519 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.63 _exptl_absorpt_correction_T_max 0.93 _exptl_absorpt_process_details 'SADABS (Sheldrick, 1996)' _exptl_special_details ; The temperature of the crystal was controlled using the Oxford Cryosystem Cryostream Cooler (Cosier & Glazer, 1986). The data collection nominally covered over a hemisphere of reciprocal space, by a combination of three sets of exposures with different \f angles for the crystal; each 10 s exposure covered 0.3\% in \w. The crystal-to-detector distance was 5.0 cm. Coverage of the unique set is over 97% complete to at least 26\% in \q. Crystal decay was found to be negligible by by repeating the initial frames at t data collection and analyzing the duplicate reflections. Hydrogen atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms H-atoms were given isotropic displacement parameter equal to 1.2 (or 1.5 for met atoms) times the equivalent isotropic displacement parameter of the atom to which they are attached. ; _diffrn_ambient_temperature 180(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'normal-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Siemens SMART diffractometer' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean 8.192 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% nil _diffrn_reflns_number 10498 _diffrn_reflns_av_R_equivalents 0.0354 _diffrn_reflns_av_sigmaI/netI 0.0309 _diffrn_reflns_limit_h_min -16 _diffrn_reflns_limit_h_max 14 _diffrn_reflns_limit_k_min -29 _diffrn_reflns_limit_k_max 29 _diffrn_reflns_limit_l_min -26 _diffrn_reflns_limit_l_max 33 _diffrn_reflns_theta_min 2.02 _diffrn_reflns_theta_max 29.05 _reflns_number_total 2190 _reflns_number_gt 1517 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART (Siemens, 1994)' _computing_cell_refinement 'SAINT (Siemens, 1995)' _computing_data_reduction 'SAINT (Siemens, 1995)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1997)' _computing_publication_material 'SHELXTL (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0286P)^2^+7.6832P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.00029(3) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -10(10) _refine_ls_number_reflns 2190 _refine_ls_number_parameters 102 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0554 _refine_ls_R_factor_gt 0.0288 _refine_ls_wR_factor_ref 0.0660 _refine_ls_wR_factor_gt 0.0583 _refine_ls_goodness_of_fit_ref 0.986 _refine_ls_restrained_S_all 0.986 _refine_ls_shift/su_max 0.002 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.0000 0.5000 0.805955(16) 0.03862(13) Uani 1 2 d S . . Br1 Br 0.2500 0.2500 0.7500 0.03301(12) Uani 1 4 d S . . Br2 Br 0.5000 0.5000 1.0000 0.04620(14) Uani 1 4 d S . . N01 N 0.13529(13) 0.47300(7) 0.84291(7) 0.0286(4) Uani 1 1 d . . . C02 C 0.19372(18) 0.49822(10) 0.88154(10) 0.0368(5) Uani 1 1 d . . . H02A H 0.1698 0.5351 0.8966 0.044 Uiso 1 1 calc R . . C03 C 0.28617(19) 0.47384(12) 0.90060(10) 0.0414(6) Uani 1 1 d . . . H03A H 0.3252 0.4936 0.9279 0.050 Uiso 1 1 calc R . . C04 C 0.32130(17) 0.41998(11) 0.87922(10) 0.0413(6) Uani 1 1 d . . . H04A H 0.3854 0.4023 0.8913 0.050 Uiso 1 1 calc R . . C05 C 0.26194(16) 0.39235(10) 0.84006(9) 0.0363(5) Uani 1 1 d . . . H05A H 0.2840 0.3550 0.8252 0.044 Uiso 1 1 calc R . . C06 C 0.16990(15) 0.41975(8) 0.82271(8) 0.0276(4) Uani 1 1 d . . . C07 C 0.10179(16) 0.39262(9) 0.78231(9) 0.0330(5) Uani 1 1 d . A . H07A H 0.1199 0.3550 0.7667 0.040 Uiso 1 1 calc R . . N08 N 0.01805(13) 0.41993(8) 0.76818(8) 0.0383(4) Uani 1 1 d . . . C09A C -0.0555(3) 0.38570(19) 0.73346(18) 0.0404(11) Uiso 0.681(8) 1 d P A 1 H09A H -0.1128 0.3678 0.7552 0.049 Uiso 0.681(8) 1 calc PR A 1 H09B H -0.0171 0.3527 0.7153 0.049 Uiso 0.681(8) 1 calc PR A 1 C10A C -0.1019(4) 0.42883(18) 0.69229(19) 0.0596(15) Uiso 0.681(8) 1 d P A 1 H10A H -0.1490 0.4066 0.6683 0.089 Uiso 0.681(8) 1 calc PR A 1 H10B H -0.0446 0.4472 0.6716 0.089 Uiso 0.681(8) 1 calc PR A 1 H10C H -0.1421 0.4605 0.7105 0.089 Uiso 0.681(8) 1 calc PR A 1 C09B C -0.0410(7) 0.4016(4) 0.7187(4) 0.040(2) Uiso 0.319(8) 1 d P A 2 H09C H -0.0108 0.4221 0.6871 0.048 Uiso 0.319(8) 1 calc PR A 2 H09D H -0.0351 0.3575 0.7133 0.048 Uiso 0.319(8) 1 calc PR A 2 C10B C -0.1544(7) 0.4191(4) 0.7258(4) 0.063(3) Uiso 0.319(8) 1 d P A 2 H10D H -0.1951 0.4063 0.6945 0.094 Uiso 0.319(8) 1 calc PR A 2 H10E H -0.1595 0.4630 0.7297 0.094 Uiso 0.319(8) 1 calc PR A 2 H10F H -0.1829 0.3995 0.7578 0.094 Uiso 0.319(8) 1 calc PR A 2 loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.0336(2) 0.0372(2) 0.0450(3) 0.000 0.000 0.01831(17) Br1 0.0393(2) 0.01784(18) 0.0418(3) 0.000 0.000 0.000 Br2 0.0259(2) 0.0636(3) 0.0491(3) 0.000 0.000 0.000 N01 0.0274(9) 0.0260(8) 0.0325(10) 0.0004(7) 0.0018(7) 0.0075(7) C02 0.0370(12) 0.0322(11) 0.0413(12) -0.0037(11) -0.0016(10) 0.0072(10) C03 0.0368(12) 0.0475(13) 0.0398(14) -0.0011(11) -0.0064(10) 0.0011(11) C04 0.0305(12) 0.0514(14) 0.0421(14) 0.0080(12) -0.0018(10) 0.0138(10) C05 0.0352(12) 0.0361(11) 0.0376(13) 0.0055(9) 0.0063(10) 0.0142(9) C06 0.0255(10) 0.0257(10) 0.0316(11) 0.0048(9) 0.0062(8) 0.0064(8) C07 0.0332(11) 0.0268(10) 0.0389(13) -0.0015(9) 0.0053(9) 0.0055(8) N08 0.0310(10) 0.0420(10) 0.0417(11) -0.0079(9) -0.0031(8) 0.0069(8) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 N08 2.0254(19) 2_565 ? Cu1 N08 2.0255(19) . ? Cu1 N01 2.0348(17) 2_565 ? Cu1 N01 2.0348(17) . ? N01 C02 1.340(3) . ? N01 C06 1.357(2) . ? C02 C03 1.373(3) . ? C03 C04 1.382(3) . ? C04 C05 1.379(3) . ? C05 C06 1.383(3) . ? C06 C07 1.459(3) . ? C07 N08 1.270(3) . ? N08 C09A 1.482(4) . ? N08 C09B 1.503(8) . ? C09A C10A 1.525(6) . ? C09B C10B 1.496(13) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N08 Cu1 N08 124.25(12) 2_565 . ? N08 Cu1 N01 81.97(7) 2_565 2_565 ? N08 Cu1 N01 124.44(7) . 2_565 ? N08 Cu1 N01 124.44(7) 2_565 . ? N08 Cu1 N01 81.97(7) . . ? N01 Cu1 N01 125.83(10) 2_565 . ? C02 N01 C06 117.07(18) . . ? C02 N01 Cu1 132.01(14) . . ? C06 N01 Cu1 110.92(13) . . ? N01 C02 C03 123.8(2) . . ? C02 C03 C04 118.6(2) . . ? C05 C04 C03 119.0(2) . . ? C04 C05 C06 119.1(2) . . ? N01 C06 C05 122.4(2) . . ? N01 C06 C07 115.31(17) . . ? C05 C06 C07 122.25(19) . . ? N08 C07 C06 119.27(19) . . ? C07 N08 C09A 116.2(2) . . ? C07 N08 C09B 121.0(3) . . ? C09A N08 C09B 20.9(4) . . ? C07 N08 Cu1 112.43(15) . . ? C09A N08 Cu1 130.76(18) . . ? C09B N08 Cu1 124.6(3) . . ? N08 C09A C10A 108.5(3) . . ? C10B C09B N08 107.9(7) . . ? _diffrn_measured_fraction_theta_max 0.927 _diffrn_reflns_theta_full 29.05 _diffrn_measured_fraction_theta_full 0.927 _refine_diff_density_max 0.344 _refine_diff_density_min -0.265 _refine_diff_density_rms 0.061