Supporting Information for the Paper Entitled "Phosphaazaallene and phosphinylimide complexes stemming from terminal and four-coordinate titanium phosphinidene"

Falguni Basuli, Lori A. Watson, John C. Huffman, and Daniel J. Mindiola*

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405 (USA)

Experimental Section

General Considerations. Unless otherwise stated, all operations were performed in a M. Braun Lab Master double-dry box under an atmosphere of purified nitrogen or using high vacuum standard Schlenk techniques under an argon atmosphere.¹ Anhydrous pentane and hexane were purchased from Aldrich in sure-sealed reservoirs (18 L) and dried by passage through two columns of activated alumina and a O-5 column.² Diethylether and CH₂Cl₂ were dried by passage through a column of activated alumina.² THF was distilled, under nitrogen, from purple sodium benzophenone ketyl and stored under sodium metal. Distilled THF was transferred under vacuum into bombs before being pumped into a dry box. C_6D_6 and $C_6D_5CD_3$ were purchased from Cambridge Isotope Laboratory (CIL), degassed and dried over CaH₂, then vacuum transferred to 4 Å molecular sieves. Celite, alumina, and 4 Å molecular sieves were activated under vacuum overnight at 200 °C. Li(Nacnac) (Nacnac⁻ = [Ar]NC(Me)CHC(Me)N[Ar], Ar = 2,6-(CHMe₂)₂C₆H₃),³ LiCH₂^tBu,⁴ (Nacnac)TiCl₂(THF),^{5,6} (Nacnac)Ti=CH^tBu(OTf),⁶ LiPHMes* (Mes* = 2, 4, 6-(Me₃C)₃C₆H₂),^{7,8} (Nacnac)Ti=PMes*(CH₂^tBu),⁹ and N₂CPh₂¹⁰ were prepared according to the literature. All other chemical were used as received. CHN analyses were performed by Desert Analytics, Tucson, AZ. ¹H, ¹³C, and ³¹P NMR spectra were recorded on Varian 500 or 400 MHz NMR spectrometers. ¹H and ¹³C NMR are reported with reference to solvent resonances (residual C₆D₅H in C₆D₆, 7.16 ppm and 128.0 ppm; residual proteotoluene in d_8 -toluene 137.9, 129.2, 128.3, 125.5, and 20.4 ppm). ³¹P NMR chemical shifts are reported with respect to external H_3PO_4 (aqueous solution, δ 0.0 ppm). X-ray diffraction data were collected on a SMART6000 (Bruker) system under a stream of $N_2(g)$ at low temperatures.

Synthesis of $(\eta^1-\text{Nacnac})\text{Ti}(\text{CN}^t\text{Bu})(\eta^2-(N,C)-^t\text{Bu}\text{N}=\text{CCH}_2^t\text{Bu})(\eta^2-(N,C)-^t\text{Bu}\text{N}=\text{C}=\text{PMes}^*)$ (2)

In a vial was loaded (Nacnac)Ti=PMes*(CH₂^tBu),⁹ [100 mg, 0.12 mmol] and dissolved in 10 mL of pentane and the solution cooled to -35 °C. To the cold solution was added a cold pentane solution (~5 mL) containing 3 equiv of CN^tBu [31.2 mg, 0.37 mmol]. After stirring for 2 hours the solution was filtered, concentrated, and cooled to -35 °C to give dark crystals of (η^1 -Nacnac)Ti(CN^tBu)(η^2 -(*N*,*C*)-^tBuN=CCH₂^tBu)(η^2 -(*N*,*C*)-^tBuN=C=PMes*) (**2**) [79 mg, 0.07 mmol, 60% yield]. Both ¹H and ¹³C NMR spectra are consistent with two isomers being present in solution. Complex **2** decomposes in solution (~t_{1/2} = 2 h, 25 °C, approx.) and in the solid state (24 h, 25 °C).

For **2**: ¹H NMR (23 °C, 399.8 MHz, C₆D₆): δ 7.52-7.08 (m, aryl), 4.01 (s, MeCCHCMe, isomer), 4.25 (s, MeCCHCMe), 3.94 (septet, CHMe₂), 3.82 (b, CHMe₂), 3.53 (septet, CHMe₂), 3.46 (septet, CH(Me)₂), 3.29 (septet, CH(Me)₂), 3.25 (septet, CH(Me)₂), 3.11 (s, ^tBuNCCH₂^tBu), 2.95 (s, ^tBuNCCH₂^tBu, isomer), 1.97 (s, CMe₃), 1.92 (s, CMe₃), 1.89 (*Me*), 1.86 (*Me*), 1.84 (*Me*), 1.82 (s, CMe₃), 1.77 (s, CMe₃), 1.58 (*Me*), 1.50 (s, CMe₃), 1.48 (s, CMe₃), 1.46 (*Me*), 1.42 (s, CMe₃), 1.39 (s, CMe₃), 1.35 (*Me*), 1.28 (*Me*), 1.26 (*Me*), 1.24 (*Me*), 1.22 (*Me*), 1.19 (s, CMe₃), 1.12 (s, CMe₃), 1.03 (s, CMe₃), 0.96 (s, CMe₃), 0.88 (s, CMe₃), 0.87 (s, CMe₃).

¹³C NMR (0 °C, 125.7 MHz, C₆D₅CD₃): δ 250.2 (^tBuN=*C*CH₂^tBu, isomer), 246.3 (^tBuN=*C*CH₂^tBu), 217.6 (d, ^tBuNCPMes*, *J*_{C-P} = 166 Hz, isomer), 213.8 (d, ^tBuNCPMes*, *J*_{C-P} = 172 Hz), 164.7 (Me*C*CHCMe), 164.4 (Me*C*CHCMe), 161.3, 161.1, 160.8, 158.1, 157.7, 155.1, 154.6, 154.5, 154.0, 149.6, 149.5, 147.9, 147.7, 147.6, 147.1,

147.0, 146.9, 146.8, 145.8, 145.0, 142.9, 141.9, 136.9, 136.7, 136.1, 126.3, 125.8, 124.6, 123.4, 123.2 ($J_{C-P} = 4$ Hz), 123.0 ($J_{C-P} = 6$ Hz), 122.8, 122.7, 122.3, 122.2, 120.9, 120.7, 103.3 ((Me)CCHC(Me)), 100.3 ((Me)CCHC(Me)), 64.8 (Me₃CN), 63.1 (Me₃CN), 62.6 (Me₃CN), 61.1 (Me₃CN), 57.4 (Me₃CN), 57.1 (Me₃CN), 51.9 ([†]BuN=CCH₂CMe₃, isomer), 51.2 ([†]BuN=CCH₂CMe₃), 38.9, 34.9, 34.7, 34.5, 33.8 ($J_{C-P} = 9$ Hz), 33.5, 33.4, 32.2, 32.0, 31.9, 30.9 ($J_{C-P} = 10$ Hz), 30.6, 29.9, 29.5, 29.1, 28.9, 28.5, 28.4, 28.0, 27.7, 27.6, 27.2, 26.8, 26.4, 26.1, 24.3, 24.0, 23.8, 23.4, 23.2, 23.1, 23.0, 22.8. ³¹P NMR (25 °C, 161.9 MHz, C₆D₆): δ -8.5 (s, [†]BuNCPMes*, isomer), -17.5 (s, [†]BuNCPMes*). IR (C₆H₆, CaF₂): 3022 (m), 2962 (s), 2868 (m), 2210 (w, v_{CN}), 2187 (w, v_{CN}), 1958 (m), 1813 (m), 1621 (m), 1551 (m, v_{CP}), 1528 (m, v_{CP}), 1476 (s),1363 (m) cm⁻¹. Anal. Calcd. for C₆₇H₁₀₈N₅PTi: C, 75.74; H, 10.24; N, 6.59. Found: C, 75.76; H, 10.31; N, 6.77. Complex **3** decomposes in solution (~t_{1/2} = 6 h, 25 °C, approx.) and in the solid state (48 h, 25 °C).

Synthesis of (Nacnac)Ti=N[P(CH₂[±]Bu)(Mes^{*})](N=CPh₂) (3)

In a vial was loaded (Nacnac)Ti=PMes*(CH₂^tBu),⁹ [100 mg, 0.12 mmol] and dissolved in 10 mL of pentane and the solution cooled to -35 °C. To the cold solution was added a cold pentane solution (~5 mL) containing 1 equiv of N₂CPh₂¹⁰ [24.12 mg, 0.12 mmol] causing an immediate color change to brown. After stirring for 1 hour the solution was filtered, concentrated, and cooled to -35 °C to give dark brown blocks of (Nacnac)Ti=N[P(CH₂^tBu)(Mes*)](N=CPh₂) (**3**) [84 mg, 0.08 mmol, 68% yield].

For **3**: ¹H NMR (23 °C, 399.8 MHz, C₆D₆): δ 7.7-6.9 (m, aryl, 18H), 5.14 (s, C(Me)CHC(Me), 1H), 3.45 (septet, CHMe₂, 1H), 3.27 (septet, CHMe₂, 1H), 3.20 (septet, CHMe₂, 1H), 3.13 (septet, CHMe₂, 1H), 2.35 (d, Ti=N-PCH₂^tBu(Mes^{*}), J_{H-P} = 13 Hz,

2H), 1.86 (s, CMe₃, 9H), 1.60-1.51 (m, C(Me)CHC(Me) and CHMe₂, 12H), 1.46 (s, CMe₃, 9H), 1.39 (d, CHMe₂, 3H), 1.36 (d, CHMe₂, 3H), 1.26 (s, CMe₃, 9H), 1.18 (d, CHMe₂, 3H), 1.16 (d, CHMe₂, 3H), 0.59 (d, CHMe₂, 3H), 0.57 (s, CMe₃, 9H), 0.52 (d, CHMe₂, 3H).

¹³C NMR (0 °C, 125.7 MHz, C₆D₅CD₃): δ 179.0 (NCPh₂), 167.4 (*C*(Me)CHC(Me)), 167.1 (C(Me)CHC(Me)), 158.2, 155.6, 148.7, 146.0 (ipso, C₆H₂^tBu₃, *J*_{C-P} = 28 Hz), 142.7, 142.6, 142.5, 141.1 (C₆H₂^tBu₃, *J*_{C-P} = 7 Hz), 136.8, 130.1, 127.3, 127.1, 126.8, 126.6, 124.4, 124.3, 124.1, 123.1, 121.4, 52.2 (Ti=N-PCH₂CMe₃(Mes*), *J*_{C-P} = 52 Hz), 39.7 (Ti=N-PCH₂CMe₃(Mes*), *J*_{C-P} = 8 Hz), 34.8, 34.6, 34.5, 31.4, 31.2, 30.5, 30.4, 29.1, 28.8, 28.6, 28.4, 25.3, 25.1, 24.8, 24.7, 24.5, 24.3, 24.2, 23.9, 23.6. ³¹P NMR (25 °C, 161.9 MHz, C₆D₆): δ 99.7 (s, Ti=N-PCH₂^tBu(Mes*)). IR (C₆H₆, CaF₂): 2962 (m), 1958 (m), 1813 (m), 1527 (m), 1485 (m), 1389 (w) cm⁻¹. Anal. Calcd. for C₆₅H₉₁N₄PTi: C, 77.51; H, 9.11; N, 5.90. Found: C, 75.88; H, 8.49; N, 5.03. Attempts to obtain satisfactory elemental analysis failed, presumably due to the thermal decomposition of **3** in the solid state.

Computational Details:

All calculations were performed with the Gaussian 98 package¹¹ at the B3PW91¹² level of theory. Basis sets used included LANL2DZ for Ti and P, $6-31G^*$ for C and N, and $6-31G^{**}$ for all hydrogens.¹³ The basis set LANL2DZ is the Los Alamos National Laboratory ECP plus a double zeta valence on Ti and P;¹⁴ additional d polarization functions¹⁵ were added to all phosphorus atoms in all DFT calculations. All optimizations were performed with C_1 symmetry and all minima were confirmed by analytical calculation of frequencies, which were also used to compute zero point energy

corrections without scaling. The initial geometry was adapted from the refined crystal structure of the analogous compound. (Nacnac*)Ti=PMes(Me) (Nacnac*⁻ = ArNCHCHCHNAr, Ar = $2,6-Me_2C_6H_3$, and Mes = $2,4,6-Me_3C_6H_2$) was used as the model.

Selected Bond Distances (Å) and Angles(°):

Ti-C: 2.083 Ti-P: 2.188 Ti-N1: 2.046 Ti-N2: 2.035 N-C(ipso): 1.437 ∠Ti-P-C2 148.1 ∠P-Ti-C1: 105.1 ∠N1-Ti-P: 114.1 ∠N2-Ti-P: 111.5

Atomic Coordinates (XYZ)

.23925 -0.56390
.74625 0.78354
.56229 2.09321
.44990 2.71059
.60352 2.05506
.81816 0.74422
.03403 0.34942
.95706 -0.16480
.19495 -0.61298
51712 -0.54822
60252 -0.01737

C 1.20971 3.35134 0.44348 H -2.78503 2.90435 -1.00176 H-2.92999 3.23496 0.72333 H -3.13853 4.54313 -0.45184 H-1.33621 5.91328 -1.01128 H 1.07444 6.48285 -0.90390 H 2.68459 4.85487 0.04445 H 3.22439 2.74972 0.87407 H 2.11385 1.39794 0.57804 H 2.06174 2.26716 2.11102 C -2.96388 -1.78449 0.23382 C -2.57447 -3.12703 0.06145 C -3.50757 -4.01997 -0.47419 C -4.78745 -3.60507 -0.82302 C -5.16165 -2.28027 -0.62593 C -4.26498 -1.35122 -0.09375 C 2.20452 2.39039 1.03106 C -2.56300 3.64233 -0.22344 C -4.69834 0.07031 0.14345 H-4.03015 0.78570-0.34497 H-4.70123 0.31954 1.21049 H-5.70822 0.23432 -0.24073 H -6.16570 -1.95426 -0.88506 H -5.49512 -4.31479 -1.24204 H -3.21657 -5.05790 -0.61356 C -1.21181 -3.61011 0.46827 H -1.07569 -3.54714 1.55432 H -0.42336 -3.00278 0.01073 H -1.06804 -4.65261 0.17386 C 3.00241 -1.58276 0.85382 C 2.71907 -1.19888 -0.48163 C 3.76633 -1.18482 -1.43606 C 5.05763 -1.53583 -1.03712 C 5.35470 -1.90731 0.27351 C 4.30928 -1.92382 1.20023 Н 4.51721 -2.21374 2.22898 Н 5.85560 -1.51663 -1.77699 C 6.75277 -2.28528 0.68344 Н 7.45710 -2.17310 -0.14526 Н 7.10797 -1.66188 1.51197 Н 6.80086 -3.32651 1.02327 C 3.52447 -0.79105 -2.86876 H 4.43601 -0.90525 -3.46261 Н 3.19271 0.25029 -2.94830 H 2.73609 -1.40159 -3.32263 C 1.92949 -1.65227 1.90417

H 2.36474 -1.76865 2.90121 H 1.26277 -2.50300 1.72723 H 1.29814 -0.75895 1.89747 P 1.04345 -0.72012 -1.03508 C -1.72323 0.67462 -2.41127 H -1.43415 0.46894 3.79236 H -2.60661 -1.28638 2.67124 H -0.49363 2.38775 2.74204 H -2.75682 1.04166 -2.32742 H -1.12017 1.44171 -2.91819 H -1.72599 -0.21026 -3.06058

Space filling model

Frontier Orbitals (HOMO-1, HOMO, and LUMO)

<u>HOMO-1</u>

<u>HOMO</u>

LUMO

References

 For a general description of the equipment and techniques used in carrying out this chemistry see: B. J. Burger and J. E. Bercaw, In *Experimental Organometallic Chemistry*; A. L. Wayda and M. Y. Darensbourg, Edx.; ACS Symposium Series 357; American Chemical Society; Washington D. C., 1987; pp 79-98.

- (2) A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, Organometallics 1996, 15, 1518.
- M. Stender, R. J. Wright, B. E. Eichler, J. Prust, M. M. Olmstead, H. W. Roesky and
 P. P. Power, *J. Chem. Soc., Dalton Trans.*, 2001, 3465.
- (4) R. R. Schrock and J. D. Fellmann, J. Am. Chem. Soc., 1978, 100, 3359.
- (5) P. H. M. Budzelaar, A. B. von Oort and A. G. Orpen, *Eur. J. Inorg. Chem.*, 1998, 1485.
- (6) F. Basuli, B. C. Bailey, J. Tomaszewski, J. C. Huffman and D. J. Mindiola, J. Am. Chem. Soc., 2003, 125, 6052.
- (7) H. V. R. Dias and P. P. Power, J. Am. Chem. Soc., 1989, 111, 144.
- (8) (a) S. Kurz and E. Hey-Hawkins, *Organometallics* 1992, 11, 2729. (b) A. H. Cowley, J. E. Kilduff, T. H. Newman and M. Pakulski, *J. Am. Chem. Soc.* 1982, 104, 5820.
- (9) F. Basuli, J. Tomaszewski, J. C. Huffman, J. C. and D. J. Mindiola, *J. Am. Chem. Soc.*, 2003, **125**, 10171.
- (10) J. B. Miller, J. Org. Chem., 1959, 24, 560.
- (11) *Gaussian 98 (Revision A.7)*, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Milliam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui., K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavavhari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson,

W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.

- (12) (a) A. D. Becke, *Phys. Rev.* 1988, A38, 3098. (b) A. D. Becke, *J. Chem. Phys.* 1993, 98, 1372. (c) A. D. Becke, *J. Chem. Phys.* 1993, 98, 5648. (d) J. P. Perdue and Y. Wang, *Phys. Rev. B.* 1991, 45, 13244.
- (13) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta* 1973, 28, 213.
- (14) (a) P. J. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82, 270. (b) W. R. Wadt, and P. J. Hay, J. Chem Phys. 1985, 82, 284. (c) P. J. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
- (15) A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking, G. *Chem. Phys. Lett.* 1993, 208, 237.

Crystallographic Experimental Section and Tables for Complexes 2 and 3

Crystallographic data for complex $(\eta^1$ -Nacnac)Ti(CN^tBu) $(\eta^2 - (N,C) - {}^tBuN = CCH_2 {}^tBu)(\eta^2 - (N,C) - {}^tBuN = CCH_2 {}^t$

(N,C)-^tBuN=C=PMes*) (2)

The sample was submitted by the research group of Prof. Dan Mindiola, Department of Chemistry, Indiana University. Inert atmosphere techniques were used to place a cleaved fragment of a large red/purple crystal of approximate dimensions $0.35 \times 0.30 \times 0.30$ mm onto the tip of a 0.15 mm diameter glass fiber which was subsequently mounted on a SMART6000 (Bruker) and cooled to 127(2) K. Several crystals were examined and were all found to have poorly defined spot shapes on the CCD detector.

Data collection

A preliminary set of cell constants was calculated from reflections obtained from three nearly orthogonal sets of 30 frames. The data collection was carried out using graphite monochromated Mo K α radiation with a frame time of 10 seconds and a detector distance of 5.0 cm. A randomly oriented region of a sphere in reciprocal space was surveyed. Four sections of 606 frames were collected with 0.30° steps in ω at different ϕ settings with the detector set at -43° in 20. Final cell constants were calculated from the xyz centroids of 966 strong reflections from the actual data collection after integration (SAINT).

Structure solution and refinement

Intensity statistics and systematic absences suggested the centrosymmetric space group P1bar and subsequent solution and refinement confirmed this choice. The structure was solved using SHELXS-97 and refined with SHELXL-97. A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters.

Table of Contents

```
Summary
```

Table 1: Program MU Output Table 2: Crystal and Diffractometer Data Table 3: Fractional Coordinates Table 4: Anisotropic Thermal Parameters Table 5: Bonded Distances and Angles Table 6: Listing of Final SHELX Results File Table 7: Listing of Final SDT Figure 1: VERSORT Drawing(s) Figure 2: ORTEP Drawing(s)

Figure 3: Space Filling Model Drawing(s)

Table 1

Program MU for data file labeled

MSC03118

The follo	owing wer	e used			
At.No.	At.Wt.	Abs.	90	No.	Element
22	47.880	23.400	3.97	1	Ti
15	30.974	7.970	2.57	1	P
7	14.007	.845	5.80	5	Ν
6	12.011	.576	76.64	77	С
1	1.008	.373	11.03	132	Н

The density is 1.025 g/cc. The volume is 3908.77 cubic Angstroms Z = 2 and the molecular wt. is 1206.78 F(000) = 1332

The linear absorption coefficient = 1.707 reciprocal centimeters, and 1/4Mu = 1.4647 mm.

Table 2

Crystal Data for MSC Sample 03118

Empirical Formula	C77H132N5PTi		
Color of Crystal:	red/purple?		
Crystal Dimensions were:	0.35 x 0.30 x 0.30 mm.		
Space Group:	P-1		
Cell Dimensions (at 127(2) K; 957	reflections) 12.297(2) 13.182(3) 24.843(5) 103.400(5) 92.806(6) 91.863(6)		
Z (Molecules/cell):	2		
Volume:	3908.8(13)		
Calculated Density:	1.025		
Wavelength:	0.71073		
Molecular Weight:	1206.75		
F(000):	1332		
Linear Absorption Coefficient:	0.171		

Data were collected on a Bruker SMART 6000 sealed-tube system comprising a three-circle platform goniostat, an HOG crystal monochromator, a four kilopixel by four kilopixel single-chip CCD-based detector, a K761 high voltage generator, and a PC interface running Bruker's SMART software. Detector to sample distance = 5.0 cm. Take off angle = 6.0 deg. Data collected by the omega scan technique according to the following parameters: 0.3 deg. 10.0 sec. frame width = time per frame = Data processing statistics for 25.0 degrees maximum theta: Total number of intensities integrated = 47023 Number of unique intensities = 13721Number with F > 4sigma(F) = 9219R for averaging = 0.116 Refinement results: Final residuals are: R(F) (observed data) = 0.0869 Rw(F2) (refinement data) = 0.2567 Final Goodness of Fit = 1.022 Maximum delta/sigma for the last cycle = 0.03

Table 3:	Fractional Coo for MSC Sample	rdinates and 03118	Isotropic Thermal	Parameters
Atom	х	У	Z	Uiso
Ti(1)	10711(1)	-59(1)	-2225(1)	22(1)
C(2)	8909(3)	-35(3)	-2271(2)	27(1)
N(3)	7980(3)	-42(3)	-2357(1)	31(1)
C(4)	6818(3)	66(3)	-2472(2)	36(1)
C(5)	6279(4)	260(5)	-1918(2)	62(2)
C(6)	6714(4)	1007(5)	-2724(3)	60(2)
C(7)	6371(4)	-925(4)	-2875(2)	53(1)
N(8)	10638(3)	13(2)	-3038(1)	24(1)
C(9)	10094(3)	757(3)	-3243(2)	28(1)
C(10)	9782(4)	643(3)	-3793(2)	34(1)
C(11)	9300(4)	1411(3)	-4050(2)	36(1)
N(12)	8920(3)	2261(3)	-3762(2)	41(1)
C(13)	8577(4)	3053(3)	-4024(2)	38(1)
C(14)	7465(4)	3210(4)	-4073(2)	45(1)
C(15)	7129(4)	4040(4)	-4289(2)	4/(1)
C(16)	7893(4)	4677(3)	-44/2(2)	43(1) 41(1)
C(17)	8966(4)	4331 (3) 2722 (2)	-4406(2)	$4 \perp (\perp)$
C(10)	9551(4) 10557(4)	3/32(3)	-4174(2)	37(1)
C(19)	11263(6)	3923(7)	-4002(2)	40(1) 87(2)
C(20)	10936(5)	1295(5)	-3495 (3)	67 (2)
C(21)	6645(4)	2497(4)	-3868(3)	57(2) 55(1)
C(23)	5584(5)	3018(6)	-3697(3)	76(2)
C(24)	6428(5)	1464(5)	-4302(3)	72(2)
C(25)	9294(5)	1160(4)	-4677(2)	47(1)
C(26)	9898(4)	1736(3)	-2820(2)	31(1)
C(27)	11078(3)	-814(3)	-3450(2)	26(1)
C(28)	10541(3)	-1797(3)	-3620(2)	29(1)
C(29)	11032(4)	-2580(3)	-4001(2)	35(1)
C(30)	11998(4)	-2394(3)	-4218(2)	38(1)
C(31)	12505(4)	-1398(3)	-4062(2)	36(1)
C(32)	12066(3)	-594(3)	-3682(2)	29(1)
C(33)	12617(3)	491(3)	-3548(2)	35(1)
C(34)	12606(5)	944(4)	-4064(2)	53(1)
C(35)	13//9(4)	500(4)	-3302(2)	40(1)
C(36)	9406(4)	-2018(3)	-3443(2)	44(1)
C(37)	85/1(4)	-2111(5)	-3924(3)	66(2)
C(30)	9307(J) 11515(3)	-2904(4) -1312(2)	-3210(2) -2138(1)	27(1)
C(41)	10601(3)	-1342(2) -1411(3)	-2130(1) -1933(2)	27(1)
C(42)	10126(4)	-2247(3)	-1673(2)	36(1)
C(42)	9641(4)	-1824(3)	-1109(2)	38(1)
C(44)	8714(5)	-1116(5)	-1159(2)	58(2)
C(45)	10536(5)	-1237(4)	-693(2)	52(1)
C(47)	12496(3)	-2005(3)	-2178(2)	33(1)
C(48)	13319(3)	-1536(3)	-2501(2)	35(1)
C(49)	12175(4)	-3122(3)	-2498(2)	41(1)
C(50)	12962(4)	-1964(4)	-1596(2)	46(1)
N(51)	10752(3)	1205(2)	-1615(1)	24(1)
C(52)	11776(3)	1029(3)	-1702(2)	25(1)

P (53) C (54) C (55) C (55) C (57) C (58) C (59) C (60) C (61) C (62) C (63) C (64) C (65) C (66) C (66) C (67) C (66) C (67) C (68) C (69) C (70) C (71) C (72) C (73) C (74) C (75) C (77) C (78) C (78)	13152(1) 13426(3) 13515(3) 13515(3) 1329(3) 13139(3) 13273(3) 13444(3) 9201(4) 14691(4) 12714(4) 13962(5) 12801(3) 11716(4) 13665(5) 12627(5) 13876(3) 12987(4) 14894(4) 14225(4) 10225(3) 8994(3) 10563(4) 10587(3) 15869(7) 15450(9) 15127(6)	1235(1) 2532(3) 2564(3) 3512(3) 4425(3) 4405(3) -2782(4) 2959(4) 3196(4) 4718(4) 5401(3) 5135(4) 5742(4) 6329(4) 1633(3) 763(3) 1178(3) 1993(4) 2071(3) 1915(3) 2029(4) 3117(3) -1687(9) -2771(8) -3045(6)	$\begin{array}{c} -1628(1)\\ -1103(2)\\ -525(2)\\ -159(2)\\ -327(2)\\ -878(2)\\ -1273(2)\\ -909(2)\\ -2057(2)\\ -2057(2)\\ -2297(2)\\ -1889(2)\\ 87(2)\\ 307(3)\\ 562(2)\\ -186(2)\\ -280(2)\\ -333(2)\\ -572(2)\\ 337(2)\\ -1219(2)\\ -1311(2)\\ -627(2)\\ -1328(2)\\ -4592(4)\\ -4648(4)\\ -4123(3)\\ \end{array}$	$\begin{array}{c} 26 (1) \\ 24 (1) \\ 26 (1) \\ 28 (1) \\ 29 (1) \\ 30 (1) \\ 28 (1) \\ 48 (1) \\ 38 (1) \\ 42 (1) \\ 49 (1) \\ 35 (1) \\ 61 (2) \\ 54 (1) \\ 35 (1) \\ 35 (1) \\ 35 (1) \\ 35 (1) \\ 35 (1) \\ 35 (1) \\ 35 (1) \\ 36 (1) \\ 34 (1) \\ 116 (3) \\ 116 (3) \\ 82 (2) \\ \end{array}$
C (79) C (80) C (81)	14589(7) 14270(9) 18162(12)	-4084(6) -4333(8) 4102(11)	-3641(5)	93(3) 130(4) 174(5)
C (82)	17917(15)	4933(14)	-2510(8)	200(6)
C(83) C(84)	16758(12)	5517(11) 6452(11)	-2241(6) -2310(6)	154(4) 170(5)
C(85) C(93)	15877(9) 13678(4)	6926(9) 3567(3)	-1994(5) -1874(2)	129(3) 33(1)
H(5A)	638	-34	-175	93
H(5C)	662	89	-167	93
H(6A)	700	164	-246	90
H(6B)	595	109	-282	90
н (8С) Н (7А)	673	-101	-323	90 79
Н(7В)	558	-88	-294	79
H(7C)	651	-153	-272	79
H(10)	990	-2	-403	41 57
н(15) н(16)	765	521	-464	51
Н(17)	948	498	-452	49
H(19)	1068	288	-406	58
H(20A)	1203	346 386	-486	131 131
H(20C)	1114	465	-451	131
H(21A)	1092	503	-350	100
H(21B)	1168	413	-340	100
H(21C)	1045	415	-322	100
п(22) Н(23A)	575	233 372	-346	07 114
,/		- : =		

H(23B)	518	260	-349	114
H(23C)	515	307	-403	114
H(24A)	611	161	-465	109
н(24B)	592	101	-416	109
H(24C)	712	112	-438	109
H(25A)	884	165	-482	70
ц(25R)	900	100	-183	70
H(25C)	1004	122	-179	70
$\Pi(23C)$	1004	122	-479	10
H(20A)	1025	234	-292	40
H(26B)	1021	108	-246	46
H(26C)	911	183	-280	46
H(29)	1068	-326	-411	41
H(30)	1232	-294	-447	45
H(31)	1317	-127	-422	43
H(33)	1219	95	-327	42
H(34A)	1302	51	-435	79
H(34B)	1294	165	-396	79
H(34C)	1185	96	-421	79
H(35A)	1378	20	-298	60
H(35B)	1408	122	-319	60
H(35C)	1423	9	-358	60
H(36)	922	-141	-314	53
H(37A)	874	-270	-423	98
H(37B)	860	-147	-406	98
H(37C)	784	-223	-380	98
H(38A)	859	-302	-306	85
ц(38B)	988	-295	-292	85
ц(20С)	020	-261	_252	05
п (Зос) ц (ДЭЛ)	1071	-301	-352	43
П (42A)	1071	-273	-102	43
H(42B)	955	-200	-193	43
H(44A)	837	-93	-81	8 /
H(44B)	818	-148	-145	8 /
H(44C)	900	-48	-125	87
H(45A)	1081	-63	-82	77
H(45B)	1113	-170	-67	77
H(45C)	1024	-100	-33	77
H(48A)	1301	-157	-288	53
H(48B)	1398	-193	-253	53
H(48C)	1350	-81	-231	53
H(49A)	1161	-342	-231	62
H(49B)	1282	-355	-252	62
H(49C)	1189	-312	-287	62
H(50A)	1312	-123	-140	69
H(50B)	1364	-234	-162	69
H(50C)	1243	-229	-140	69
H(56)	1333	353	23	34
H(58)	1325	504	-100	36
ц(60л)	0.01	_321	-84	50 73
H(60R)	969	-321	-04	73
	000	-320	-119	13
	883	-204	- 36	/3
H(61A)	1453	221	-210	57
H(61B)	1529	319	-178	57
H(61C)	1490	309	-241	57
H(62A)	1290	331	-266	63
H(62B)	1208	359	-218	63
H(62C)	1255	245	-233	63
H(63A)	1426	474	-225	74

Н(63В)	1451	502	-159	74
Н(63С)	1330	512	-184	74
H(65A)	1116	495	0	91
Н(65В)	1149	574	58	91
Н(65С)	1180	454	48	91
H(66A)	1340	632	84	82
Н(66В)	1434	597	42	82
H(66C)	1381	516	73	82
H(67A)	1205	614	-48	87
н(67в)	1331	651	-34	87
н (67С)	1241	693	9	87
H(69A)	1329	18	-21	53
н(69В)	1272	53	-72	53
H(69C)	1239	103	-10	53
H(70A)	1518	65	-39	53
H(70B)	1545	174	-55	53
H(70C)	1469	86	-96	53
H(71A)	1359	221	55	62
H(71B)	1475	259	39	62
H(71C)	1456	142	46	62
H(73A)	878	194	-169	53
H(73B)	865	247	-105	53
H(73C)	877	123	-125	53
H(74A)	1035	134	-57	55
H(74B)	1020	257	-37	55
H(74C)	1136	214	-57	55
H(75A)	1138	320	-128	51
H(75B)	1027	368	-106	51
H(75C)	1027	317	-171	51
ц(76д)	1537	_120	-138	173
н(76в)	1593	-155	-196	173
H(76C)	1659	-159	-440	173
H(77A)	1602	-325	-481	139
н(77в)	1/81	-290	-491	139
ц(79д)	1570	-300	-387	100
u (96)	1463	-251	-301	99
H(707)	1500	-251	-126	99 112
п(79A) ц(70P)	1202	-402	-430	112
п(79D) ч(80Л)	1/03	-414	-342	195
H (80A)	1202	-441	-342	195
H (00B)	1202	-499	-372	195
H(OUC)	1005	-577	-344	195
H (OIA)	1702	411	-220	261
H(81B)	1793 1770	348	-262	261
H(SIC)	17/0	410	-200	261
H(82A)	1769	4/1	-291	240
H(82B)	1858	539	-24/	240
п(03А)	1720	504	-231 104	105
н (838)	1/3U	263	-184	185
н (84A) н (84Б)	1004	63/	-2/1	204
н(84В)	1/39	695	-223	204
H(85A)	1519	656	-215	194
H(85B)	1585	766	-201	194
H(85C)	1600	689	-161	194

Notes:

1) Fractional coordinates are X 10**4 for non-hydrogen atoms and X 10**3 for hydrogen atoms. Uiso values are all X 10**3.

2) Isotropic values for those atoms refined anisotropically are calculated as one third of the trace of the orthogonalized Uij tensor.

3) Parameters without standard deviations were not varied.

Table	4: Anis	sotropic Thermal	Parameters	for MSC	Sample 03118	
Atom	U11	U22	U33	U23	U13	U12
Ti(1)	22(1)	21(1)	21(1)	3(1)	6(1)	2(1)
C(2)	24(2)	28(2)	28(2)	3(2)	8(2)	0(2)
N(3)	31(2)	28(2)	31(2)	1(1)	10(2)	3(1)
C(4)	24(2)	41(2)	41(3)	4(2)	9(2)	1(2)
C(5)	32(3)	92(4)	58(4)	4(3)	18(2)	8(3)
C(6)	34(3)	63(4)	88(4)	29(3)	-5(3)	3(2)
C(7)	31(3)	54(3)	64(3)	-4(3)	2(2)	-7(2)
N(8)	27(2)	24(2)	21(2)	2(1)	4(1)	3(1)
C(9)	26(2)	27(2)	28(2)	3(2)	8(2)	0(2)
C(10)	46(3)	23(2)	29(2)	0(2)	0(2)	8(2)
C(11)	42(3)	32(2)	33(2)	3(2)	2(2)	7(2)
N(12)	54(2)	34(2)	38(2)	10(2)	7(2)	18(2)
C(13)	51(3)	32(2)	32(2)	7(2)	5(2)	16(2)
C(14)	48(3)	39(3)	51(3)	17(2)	3(2)	7(2)
C(15)	40(3)	44(3)	60(3)	16(2)	4(2)	15(2)
C(16)	57(3)	26(2)	46(3)	12(2)	0(2)	5(2)
C(17)	50(3)	31(2)	41(3)	6(2)	0(2)	2(2)
C(18)	49(3)	29(2)	30(2)	-1(2)	6(2)	8(2)
C(19)	49(3)	42(3)	54 (3)	13(2)	-1(2)	7(2)
C(20)	5/(4)	143(/)	/0(4)	34(5)	20(3)	32(4)
C(21)	61(4) 50(2)	/ 5 (4) E 4 (2)	61(4)	1/(3)	-15(3)	-10(3)
C(22)	50(3)	24 (3) 94 (5)	/2(4)	32(3)	8(3) 21(4)	$\perp \perp (\angle)$ 17(2)
C(23)	58(4)	64 (J)	94 (J) 107 (5)	40(4) 36(4)	51(4)	(3)
C(24)	70(3)	41(3)	28(2)	3(2)	-5(2)	2(3) 19(2)
C(25)	40(2)	28(2)	20(2) 24(2)	4(2)	5(2)	5(2)
C(27)	28(2)	27(2)	20(2)	1(2)	0(2)	7(2)
C(28)	33(2)	30(2)	22(2)	1(2)	4(2)	3(2)
C(29)	41(3)	27 (2)	31(2)	-1(2)	0(2)	5(2)
C(30)	41(3)	36(2)	34(2)	2(2)	7(2)	13(2)
C(31)	33(2)	41(2)	34(2)	7(2)	6(2)	8(2)
C(32)	26(2)	34(2)	27(2)	8(2)	-1(2)	4(2)
C(33)	31(2)	37(2)	37(2)	8(2)	8(2)	-2(2)
C(34)	61(3)	47(3)	54(3)	23(3)	-3(3)	-11(2)
C(35)	34(2)	48(3)	39(3)	12(2)	5(2)	-7(2)
C(36)	46(3)	32(2)	48(3)	-10(2)	18(2)	-4(2)
C(37)	35(3)	61(4)	106(5)	29(3)	8(3)	4(3)
C(38)	55(3)	63(3)	46(3)	7(3)	3(2)	-24(3)
N(40)	28(2)	26(2)	27(2)	5(1)	5(1)	1(1)
C(41)	29(2)	21(2)	29(2)	3(2)	4(2)	-1(2)
C(42)	39(3)	34(2)	34(2)	8(2)	11(2)	1(2)
C(43)	50(3)	36(2)	31(2)	9(2)	15(2)	-1(2)
C(44)	65(4) 75(4)	66(4) 49(2)	51(3)	24(3)	34(3)	10(3)
C(40)	70(4) 21(2)	40(3)	∠ ୬ (J) 33 (J)	S(Z)	±J(Z) 6(2)	-14(3) 7(2)
C(42)	J⊥(Z) 2Q(2)	34(2)	JJ (Z) 43 (3)	0(Z) 9(2)	10(2)	7 (Z) 8 (2)
C(49)	29(2) 48(3)	29(2)	47 (3)	- (∠) 5 (2)	16(2)	5 (∠) 7 (2)
C(50)	50(3)	54(3)	36(3)	10(2)	8(2)	12(2)
N(51)	22(2)	24(2)	25(2)	0(1)	5(1)	2(1)
C(52)	33(2)	23(2)	18(2)	4(2)	4(2)	3(2)
P(53)	22(1)	25(1)	27(1)	-1(1)	7(1)	2(1)

C(54)	17(2)	26(2)	24(2)	-2(2)	5(2)	1(2)
C(55)	18(2)	27(2)	30(2)	1(2)	6(2)	-2(2)
C(56)	26(2)	32(2)	24(2)	-1(2)	6(2)	-1(2)
C(57)	23(2)	25(2)	34(2)	-4(2)	8(2)	-2(2)
C(58)	25(2)	26(2)	37(2)	3(2)	3(2)	-1(2)
C(59)	22(2)	29(2)	30(2)	2(2)	3(2)	-1(2)
C(60)	59(3)	52(3)	35(3)	12(2)	11(2)	-11(2)
C(61)	37(2)	46(3)	32(2)	11(2)	11(2)	-2(2)
C(62)	45(3)	51(3)	32(2)	14(2)	4(2)	1(2)
C(63)	64(3)	40(3)	47(3)	16(2)	11(2)	-5(2)
C(64)	30(2)	25(2)	44(3)	-7(2)	11(2)	1(2)
C(65)	49(3)	37(3)	85(4)	-15(3)	38(3)	-1(2)
C(66)	59(3)	44(3)	48(3)	-14(2)	7(3)	3(2)
C(67)	70(4)	35(3)	61(4)	-7(2)	17(3)	9(2)
C(68)	32(2)	30(2)	31(2)	6(2)	5(2)	3(2)
C(69)	43(3)	32(2)	33(2)	11(2)	9(2)	3(2)
C(70)	35(2)	36(2)	34(2)	7(2)	3(2)	9(2)
C(71)	49(3)	39(2)	36(3)	8(2)	6(2)	4(2)
C(72)	25(2)	26(2)	26(2)	-7(2)	7(2)	5(2)
C(73)	30(2)	34(2)	37(2)	-5(2)	12(2)	5(2)
C(74)	37(2)	42(2)	28(2)	-2(2)	13(2)	6(2)
C(75)	28(2)	30(2)	39(2)	-1(2)	9(2)	3(2)
C(76)	91(6)	160(10)	104(7)	56(7)	-18(5)	-18(6)
C(77)	162(10)	115(7)	72(6)	28(5)	-13(6)	11(7)
C(78)	63(4)	100(6)	74(5)	2(4)	-6(3)	5(4)
C(79)	78(5)	76(5)	112(7)	-2(4)	-16(4)	30(4)
C(80)	144(9)	117(8)	136(9)	32(7)	60(7)	22(7)
C(93)	34(2)	35(2)	31(2)	8(2)	4(2)	-1(2)

Form of the anisotropic thermal parameter: exp{ -2 pi**2 [h**2 (a*)**2 U11 + ... + 2 h k (a*) (b*) U12] } All values are X 10**3

		_
A	В	Distance
Ti(1) Ti(1) Ti(1) Ti(1) Ti(1) Ti(1) C(2) N(3) C(4) C(4)	N(51) N(40) N(8) C(52) C(41) C(2) N(3) C(4) C(7) C(6)	1.973(3) 2.036(3) 2.041(3) 2.077(4) 2.078(4) 2.214(4) 1.151(5) 1.462(6) 1.518(7) 1.519(7)
C (4) N (8) N (8) C (9) C (10) C (11) C (11) N (12) C (11) N (12) C (13) C (13) C (14) C (14) C (15) C (16) C (17)	C(5) C(9) C(27) C(10) C(26) C(11) N(12) C(25) C(13) C(14) C(14) C(14) C(15) C(15) C(22) C(16) C(17) C(18)	1.527(7) 1.382(5) 1.450(5) 1.373(6) 1.498(5) 1.445(6) 1.295(6) 1.515(6) 1.416(6) 1.393(7) 1.408(7) 1.392(7) 1.539(7) 1.347(7) 1.397(6)
C (18) C (19) C (19) C (22) C (22) C (27) C (27) C (27) C (28) C (28) C (28) C (28) C (29) C (30) C (31) C (32) C (33) C (33) C (36)	C (19) C (21) C (20) C (23) C (24) C (28) C (32) C (29) C (36) C (30) C (31) C (32) C (33) C (33) C (35) C (34) C (38)	1.513(7) $1.521(8)$ $1.524(8)$ $1.527(8)$ $1.535(9)$ $1.399(6)$ $1.421(6)$ $1.404(6)$ $1.523(6)$ $1.366(6)$ $1.396(6)$ $1.388(6)$ $1.520(6)$ $1.526(6)$ $1.533(7)$ $1.511(7)$
C(36) N(40) N(40) C(41) C(42) C(43)	C (37) C (41) C (47) C (42) C (43) C (44)	1.517(8) 1.267(5) 1.506(5) 1.514(6) 1.540(6) 1.514(7)

Table 5a: Bond Distances for MSC Sample 03118

C (43) C (43) C (47) C (47) C (47) N (51) N (51) C (52) P (53) C (54)	C (45) C (60) C (50) C (48) C (49) C (52) C (52) C (72) P (53) C (54) C (59)	1.530(7) 1.551(6) 1.519(6) 1.523(6) 1.531(6) 1.308(5) 1.510(5) 1.698(4) 1.903(4) 1.403(6)
C (54) C (55) C (55) C (56) C (57) C (57) C (58) C (59) C (61) C (62) C (64) C (64) C (64) C (68) C (68)	C (55) C (56) C (68) C (57) C (58) C (64) C (59) C (93) C (93) C (93) C (93) C (93) C (93) C (66) C (65) C (67) C (71) C (69)	1.427(6) 1.398(5) 1.558(6) 1.385(6) 1.380(6) 1.532(5) 1.409(6) 1.565(6) 1.534(6) 1.555(6) 1.524(7) 1.526(6) 1.531(6) 1.536(6)
C (68) C (72) C (72) C (72) C (76) C (77) C (78) C (79) C (81) C (82) C (83) C (84)	C (70) C (73) C (74) C (75) C (77) C (78) C (79) C (80) C (82) C (83) C (84) C (85)	1.546(6) 1.519(6) 1.521(6) 1.523(6) 1.477(12) 1.499(11) 1.474(11) 1.521(12) 1.305(17) 1.390(18) 1.359(15) 1.443(15)

Symmetry transformations used to generate equivalent atoms:

Table 5b: Bond Angles for MSC Sample 03118

А	В	С	Angle
N(51)	Ti(1)	N (40)	120.78(14)
N(51)	Ti(1)	N (8)	122.17(13)
N(40)	Ti(1)	N (8)	109.53(13)
N(51)	Ti(1)	C (52)	37.56(14)
N (40) N (40) N (8) N (51)	Ti (1) Ti (1) Ti (1)	C (52) C (52) C (41)	96.28 (14) 115.55 (14) 111.68 (15)
N(40)	Ti(1)	C (41)	35.85(14)
N(8)	Ti(1)	C (41)	125.90(14)
C(52)	Ti(1)	C (41)	109.67(15)
N(51)	Ti(1)	C (2)	88.90(14)
N (40) N (8) C (52)	Ti(1) Ti(1) Ti(1)	C (2) C (2) C (2) C (2)	122.35(14) 86.97(14) 126.39(15)
N (3) C (2) N (3)	C (2) N (3) C (4)	C(2) Ti(1) C(4) C(7)	172.5(3) 173.8(4) 108.3(4)
N (3)	C (4)	C (6)	107.1(4)
C (7)	C (4)	C (6)	111.2(4)
N (3)	C (4)	C (5)	107.3(4)
C (7)	C (4)	C (5)	112.6(4)
C (6)	C (4)	C(5)	110.2(4)
C (9)	N (8)	C(27)	115.6(3)
C (9)	N (8)	Ti(1)	124.3(2)
C(27)	N (8)	Ti(1)	119.8(2)
C(10)	C (9)	N(8)	123.7(4)
C(10)	C (9)	C(26)	121.4(4)
N(8)	C (9)	C(26)	114.8(3)
C (9)	C (10)	C (11)	127.3(4)
N (12)	C (11)	C (10)	122.2(4)
N (12)	C (11)	C (25)	122.7(4)
C (10)	C (11)	C(25)	115.0(4)
C (11)	N (12)	C(13)	120.4(4)
C (14)	C (13)	C(18)	121.1(4)
C (14)	C (13)	N(12)	118.4(4)
C (18)	C (13)	N (12)	120.2(4)
C (15)	C (14)	C (13)	118.6(5)
C (15)	C (14)	C (22)	121.7(5)
C (13) C (14) C (17) C (16)	C (14) C (15) C (16) C (17)	C (22) C (16) C (15) C (18)	120.5(5) 120.0(4) 121.9(4)
C (17) C (17) C (13)	C(18) C(18) C(18) C(18)	C (13) C (19) C (19) C (21)	117.8(4) 121.5(4) 120.6(4)
C (18) C (21) C (23)	C (19) C (19) C (19) C (22)	C (21) C (20) C (20) C (24)	113.6(4) 108.4(5) 111.4(5)
C(23)	C(22)	C(14)	113.4(4)

C(35) $C(33)$ $C(34)$ $110.3(4)$ $C(38)$ $C(36)$ $C(37)$ $109.1(4)$ $C(38)$ $C(36)$ $C(28)$ $114.1(4)$ $C(37)$ $C(36)$ $C(28)$ $110.3(4)$ $C(41)$ $N(40)$ $C(47)$ $132.6(3)$ $C(41)$ $N(40)$ $Ti(1)$ $73.9(2)$ $C(47)$ $N(40)$ $Ti(1)$ $73.9(2)$ $C(47)$ $N(40)$ $Ti(1)$ $153.4(3)$ $N(40)$ $C(41)$ $C(42)$ $130.2(4)$ $N(40)$ $C(41)$ $Ti(1)$ $70.3(2)$ $C(42)$ $C(41)$ $Ti(1)$ $159.6(3)$ $C(42)$ $C(41)$ $Ti(1)$ $159.6(3)$ $C(41)$ $C(42)$ $C(43)$ $114.3(3)$ $C(44)$ $C(43)$ $C(45)$ $110.2(4)$ $C(44)$ $C(43)$ $C(42)$ $111.5(4)$ $C(44)$ $C(43)$ $C(60)$ $109.2(4)$ $C(44)$ $C(43)$ $C(60)$ $109.3(4)$ $C(42)$ $C(43)$ $C(60)$ $109.3(4)$ $C(42)$ $C(43)$ $C(60)$ $107.0(4)$ $N(40)$ $C(47)$ $C(48)$ $107.0(3)$ $C(50)$ $C(47)$ $C(48)$ $100.4(4)$ $N(40)$ $C(47)$ $C(49)$ $109.9(4)$	
C(43) $C(47)$ $C(49)$ $112.0(4)$ $C(48)$ $C(47)$ $C(49)$ $108.8(3)$ $C(52)$ $N(51)$ $C(72)$ $131.3(3)$ $C(52)$ $N(51)$ $Ti(1)$ $75.5(2)$ $C(72)$ $N(51)$ $Ti(1)$ $153.1(3)$ $N(51)$ $C(52)$ $P(53)$ $158.1(3)$ $N(51)$ $C(52)$ $Ti(1)$ $66.9(2)$ $P(53)$ $C(52)$ $Ti(1)$ $135.0(2)$ $C(52)$ $P(53)$ $C(54)$ $106.36(17)$ $C(52)$ $P(53)$ $C(55)$ $118.8(3)$ $C(59)$ $C(54)$ $P(53)$ $120.9(3)$ $C(55)$ $C(54)$ $P(53)$ $120.9(3)$ $C(56)$ $C(55)$ $C(68)$ $118.6(4)$ $C(56)$ $C(55)$ $C(68)$ $118.6(4)$ $C(54)$ $C(55)$ $C(68)$ $124.0(3)$ $C(57)$ $C(56)$ $C(57)$ $C(56)$ $C(58)$ $C(57)$ $C(64)$ $122.6(4)$ $C(56)$ $C(57)$ $C(64)$ $120.6(4)$	

C(59)	C(58)	118.5(4)
C(59)	C(93)	123.8(3)
C(59)	C(93)	117.6(4)
C(64)	C(65)	110.5(4)
C(64)	C(57)	110.6(4)
C(64)	C(57)	107.9(3)
C(64)	C(67)	108.1(4)
C(64)	C(67)	107.5(4)
C(64)	C(67)	112.2(4)
C(68)	C(69)	106.6(3)
C(68)	C(70)	106.1(4)
C(68)	C(70)	109.7(3)
C(68)	C(55)	111.5(3)
C(68)	C(55)	114.0(3)
C(68)	C(55)	108.5(3)
C(72)	C(73)	109.0(3)
C(72)	C(74)	109.0(3)
C(72)	C(74)	109.6(3)
C(72)	C(75)	109.2(3)
C(72)	C(75)	109.6(3)
C(72)	C(75)	110.4(3)
C(77)	C(78)	115.8(8)
C(78)	C(77)	116.4(7)
C(79)	C(80)	114.9(7)
C(82)	C(83)	116.1(16)
C(83)	C(82)	127.5(14)
C(84)	C(85)	118.9(13)
C(93)	C(62)	110.5(4)
C(93)	C(63)	105.9(4)
C(93)	C(63)	106.3(4)
C(93)	C(59)	109.0(3)
C(93)	C(59)	113.8(3)
C(93)	C(59)	111.1(4)
	C (59) C (59) C (59) C (64) C (64) C (64) C (64) C (64) C (64) C (68) C (68) C (68) C (68) C (68) C (72) C (73) C (93) C (93) C (93) C (93)	$\begin{array}{cccc} C \left(59 \right) & C \left(58 \right) \\ C \left(59 \right) & C \left(93 \right) \\ C \left(59 \right) & C \left(93 \right) \\ C \left(64 \right) & C \left(65 \right) \\ C \left(64 \right) & C \left(57 \right) \\ C \left(64 \right) & C \left(57 \right) \\ C \left(64 \right) & C \left(67 \right) \\ C \left(64 \right) & C \left(67 \right) \\ C \left(64 \right) & C \left(67 \right) \\ C \left(68 \right) & C \left(70 \right) \\ C \left(68 \right) & C \left(70 \right) \\ C \left(68 \right) & C \left(55 \right) \\ C \left(68 \right) & C \left(55 \right) \\ C \left(68 \right) & C \left(55 \right) \\ C \left(68 \right) & C \left(55 \right) \\ C \left(72 \right) & C \left(73 \right) \\ C \left(72 \right) & C \left(74 \right) \\ C \left(72 \right) & C \left(74 \right) \\ C \left(72 \right) & C \left(75 \right) \\ C \left(72 \right) & C \left(75 \right) \\ C \left(72 \right) & C \left(75 \right) \\ C \left(72 \right) & C \left(75 \right) \\ C \left(72 \right) & C \left(75 \right) \\ C \left(72 \right) & C \left(75 \right) \\ C \left(72 \right) & C \left(75 \right) \\ C \left(77 \right) & C \left(78 \right) \\ C \left(77 \right) & C \left(80 \right) \\ C \left(82 \right) & C \left(83 \right) \\ C \left(83 \right) & C \left(82 \right) \\ C \left(84 \right) & C \left(85 \right) \\ C \left(93 \right) & C \left(63 \right) \\ C \left(93 \right) & C \left(59 \right) \\ C \left(93 \right) & C \left(59 \right) \\ C \left(93 \right) & C \left(59 \right) \\ \end{array}$

Symmetry transformations used to generate equivalent atoms:

Table	5c:	Tors	ion	angle	s for	MSC	Sample	03118		
A -	в –	С	_	D					Torsion Angle	
									-	
N(51)		Ti(1)	С	(2)		N(3)		134(3)	
N(40)		Ti(1)	С	(2)		N(3)		-99(3)	
N(8)		Ti(1)	С	(2)		N(3)		12(3)	
C(52)		Ti(1)	С	(2)		N(3)		132(3)	
C(41)		Ti(1)	С	(2)		N(3)		-114(3)	
Ti(1)		C (2	2)	N	(3)		C(4)		-81(5)	
C(2)		N (3	5)	С	(4)		C (7)		137(4)	
C(2)		N(J	5) 	C	(4)		C(6)		⊥/(4) 101(4)	
C(2) N(51)		IN (S) 11	C NI	(4)		C(3)		-101(4) -33 9(4)	
N(31) N(40)		тт (тт ((1)	N	(8)		C(9)		-33.9(4) 176 3(3)	
C(52)		Ti (1)	N	(8)		C(9)		-76.4(3)	
C(41)		Ti (1)	N	(8)		C(9)		139.9(3)	
C(2)		Ti (1)	Ν	(8)		C(9)		52.9(3)	
N(51)		Ti(1)	Ν	(8)		C(27)		152.8(3)	
N(40)		Ti(1)	Ν	(8)		C(27)		2.9(3)	
C(52)		Ti(1)	N	(8)		C(27)		110.3(3)	
C(41)		Ti(1)	Ν	(8)		C(27)		-33.5(3)	
C(2)		Ti(1)	Ν	(8)		C(27)		-120.4(3)	
C(27)		N (8	;)	С	(9)		C(10)		12.8(6)	
$T_{\perp}(1)$		N (8	5) 	C	(9)		C(10)		-160.8(3)	
C(Z /) T + (1)		N (8))	C	(9)		C(26)		-165.0(3)	
$1 \pm (1)$ N(8)			•)	C	(3)		C(20)		-174 2 (4)	
C(26)		C (9)	C	(10)		C(11)		3.5(7)	
C(9)		C(1	.0)	C	(11)		N(12)		-12.9(8)	
C(9)		C(1	.0)	С	(11)		C(25)		165.8(4)	
C(10)		C(1	1)	Ν	(12)		C(13)		172.2(4)	
C(25)		C(1	1)	Ν	(12)		C(13)		-6.5(7)	
C(11)		N(1	2)	С	(13)		C(14)		109.0(5)	
C(11)		N(1	.2)	С	(13)		C(18)		-77.8(6)	
C(18)		C(1	.3)	С	(14)		C(15)		1.8(7)	
N(12)		C (1	.3) 2)	C	(14)		C(15)		1/5.0(4) -175.8(5)	
$\mathbb{C}(10)$ $\mathbb{N}(12)$		C (1	. J) 3)	C	(14)		C(22)		-173.8(3) -27(7)	
C(13)		C (1	4)	C	(15)		C(22) C(16)		2.3(8)	
C(22)		C(1	4)	C	(15)		C(16)		179.9(5)	
C(14)		C (1	.5)	C	(16)		C(17)		-4.3(8)	
C(15)		C(1	6)	С	(17)		C(18)		2.1(7)	
C(16)		C(1	7)	С	(18)		C(13)		1.9(7)	
C(16)		C(1	7)	С	(18)		C(19)		-175.4(4)	
C(14)		C(1	3)	С	(18)		C(17)		-3.9(7)	
N(12)		C(1	.3)	С	(18)		C(17)		-177.0(4)	
C(14)		C(1	.3)	C	(18)		C(19)		173.4(4)	
N(12)		C(1	.3)	С	(TS)		C(19)		U.4(6)	

C(17)	C(18)	C(19)	C(21)	86.6(6)
C(13)	C(18)	C(19)	C(21)	-90.7(5)
C(17)	C(18)	C(19)	C(20)	-35.2(7)
C(13)	C(18)	C(19)	C(20)	147.5(5)
C(15)	C(14)	C(22)	C(23)	-24 3(8)
C(13)	C(11)	C(22)	C(23)	153 3(5)
C(15)	C(14)	C(22)	C(23)	101.5(5)
C(13)	C(14)	C(22)	C(24)	101.3(0)
C(13)	C(14)	C(2Z)	C(24)	-00.9(0)
C(9)	IN (O)	C(27)	C(20)	-100.7(4)
$T \perp (T)$	N (0)	C(27)	C(20)	75.2(4)
C(9)	N (8)	C(27)	C(32)	/8.6(4) 107 E(2)
$T \perp (T)$	N (0)	C(27)	C(32)	-107.5(3)
C(32)	C(27)	C(20)	C(29)	3.7(0)
N(0)	C(27)	C(20)	C(29)	-1//.1(4)
C(32)	C(27)	C(20)	C(36)	-1/1.2(4)
N(8)	C(27)	C(28)	C(36)	8.0(6)
C(27)	C(28)	C(29)	C(30)	-1.8(6)
C(36)	C(28)	C(29)	C(30)	1/3.3(4)
C(28)	C(29)	C(30)	C(31)	-0.8(7)
C(29)	C(30)	C(31)	C(32)	1.5(/)
C(30)	C(31)	C(32)	C(27)	0.4(6)
C(30)	C(31)	C(32)	C(33)	-176.8(4)
C(28)	C(27)	C(32)	C(31)	-3.0(6)
N(8)	C(27)	C(32)	C(31)	177.7(4)
C(28)	C(27)	C(32)	C(33)	174.1(4)
N(8)	C(27)	C(32)	C(33)	-5.1(6)
C(31)	C(32)	C(33)	C(35)	-60.7(5)
C(27)	C(32)	C(33)	C(35)	122.2(4)
C(31)	C(32)	C(33)	C(34)	63.0(5)
C(27)	C(32)	C(33)	C(34)	-114.1(5)
C(27)	C(28)	C(36)	C(38)	-130.4(4)
C(29)	C(28)	C(36)	C(38)	54.6(6)
C(27)	C(28)	C(36)	C(37)	106.3(5)
C(29)	C(28)	C(36)	C(37)	-68.6(5)
N(51)	Ti(1)	N(40)	C(41)	84.8(3)
N(8)	Ti(1)	N(40)	C(41)	-124.8(2)
C(52)	Ti(1)	N(40)	C(41)	115.2(2)
C(2)	Ti(1)	N(40)	C(41)	-25.7(3)
N(51)	Ti(1)	N(40)	C(47)	-89.7(6)
N(8)	Ti(1)	N(40)	C(47)	60.6(6)
C(52)	Ti(1)	N(40)	C(47)	-59.3(6)
C(41)	Ti(1)	N(40)	C(47)	-174.5(7)
C(2)	Ti(1)	N(40)	C(47)	159.7(6)
C(47)	N(40)	C(41)	C(42)	-3.9(7)
Ti(1)	N(40)	C(41)	C(42)	179.4(5)
C(47)	N(40)	C(41)	Ti(1)	176.7(4)
N(51)	Ti(1)	C(41)	N(40)	-113.0(2)
N(8)	Ti(1)	C(41)	N(40)	72.7(3)
C(52)	Ti(1)	C(41)	N(40)	-72.8(3)
C(2)	Ti(1)	C(41)	N(40)	158.5(2)
N(51)	Ti(1)	C(41)	C(42)	68.3(9)
N(40)	Ti(1)	C(41)	C(42)	-178.8(10)
N(8)	Ti(1)	C(41)	C(42)	-106.0(9)
C(52)	Ti(1)	C(41)	C(42)	108.5(9)
C(2)	Ti(1)	C(41)	C(42)	-20.3(9)
N(40)	C(41)	C(42)	C(43)	131.0(5)

Ti(1)	C(41)	C(42)	C(43)	-50.5(11)
C(41)	C(42)	C(43)	C(44)	60.7(5)
C(41)	C(42)	C(43)	C(45)	-61.5(5)
C(41)	C(42)	C(43)	C(60)	-179.9(4)
C(41)	N(40)	C(47)	C(50)	-63.8(6)
Ti(1)	N(40)	C(47)	C(50)	109.1(6)
C(41)	N(40)	C(47)	C(48)	177.1(4)
Ti(1)	N(40)	C(47)	C(48)	-10.0(8)
C(41)	N(40)	C(47)	C(49)	59.0(6)
Ti(1)	N(40)	C(47)	C(49)	-128.1(5)
N(40)	Ti(1)	N(51)	C(52)	55.5(3)
N(8)	Ti(1)	N(51)	C(52)	-91.0(2)
C(41)	Ti(1)	N(51)	C(52)	94.4(2)
C(2)	Ti(1)	N(51)	C(52)	-176.8(2)
N(40)	Ti(1)	N(51)	C(72)	-128.3(6)
N(8)	Ti(1)	N(51)	C(72)	85.1(6)
C(52)	Ti(1)	N(51)	C(72)	176.2(7)
C(41)	Ti(1)	N(51)	C(72)	-89.4(6)
C(2)	Ti(1)	N(51)	C(72)	-0.6(6)
C(72)	N(51)	C(52)	P(53)	-1.8(11)
Ti(1)	N(51)	C(52)	P(53)	175.9(8)
C(72)	N(51)	C(52)	-() Ti(1)	-177.7(4)
N(40)	τi(1)	C(52)	N(51)	-134.5(2)
N(8)	τ±(1)	C(52)	N(51)	10.3(2)
C(41)	Ti(1)	C(52)	N(51)	-100.3(2)
C(2)	τ±(1)	C(52)	N(51)	4.0(3)
N(51)	Ti(1)	C(52)	P(53)	-177 8 (4)
N(40)	Ti(1)	C(52)	P(53)	47 6(3)
N(8)	ΤΞ(Ξ) ΤΙ(1)	C(52)	P(53)	-67 5(3)
C(41)	Ti(1)	C(52)	P(53)	81 9 (3)
C(2)	Ti(1)	C(52)	P(53)	-173 8(2)
N(51)	C(52)	P(53)	C(54)	-2 2(9)
Ti (1)	C (52)	P(53)	C(54)	172 4(3)
C(52)	P(53)	C(54)	C(59)	-86.9(3)
G (F Q)				
C(52)	P(53)	C (54)	C(55)	8/.3(3) 10 E(E)
C(59)	C(54)	C (55)	C(56)	16.3(3)
P(53)	C(54)	C (55)	C(56)	-15/.8(3)
C(59)	C(54)	C (55)	C(68)	-159.6(4)
P(53)	C (54)	C(55)	C(68)	26.2(5)
C(54)	C(55)	C(56)	C(57)	-4.6(6)
C(66)	C(55)	C (56)	C(57)	1/1.7(4)
C(55)	C(56)	C(57)	C(58)	-7.8(6)
C(55)	C(56)	C(57)	C (64)	1/2.3(4)
C(56)	C(57)	C (58)	C(59)	8./(6) 171 E(4)
C(64)	C(57)	C (58)	C(59)	-1/1.5(4)
C (55)	C(54)	C (59)	C(58)	-15.8(5)
ビ (ころ) C (FF)	C(54)	C(59)	C(28)	100.5(3)
U (33)	C(54)	C(59)	C (93)	162.3(4)
r(33)		C(59)	C(93)	-23.3(5)
C(3/)		C(59)	C(54)	3.0(6)
C(5/)		C(59)	C(93)	-1/5.2(4)
	C(5/)			-120.4(5)
C(50)	C(57)			39.4(5)
C(38)	C(5/)			$\pm \pm \delta \cdot / (5)$
C(3b)	C(5/)			-61.5(6)
U (38)	C(5/)	C(64)	С(67)	0.4(6)

C(56)	C(57)	C(64)	C(67)	-179.8(4)
C(56)	C(55)	C(68)	C(71)	-13.3(5)
C(54)	C(55)	C(68)	C(71)	162.7(4)
C(56)	C(55)	C(68)	C(69)	107.6(4)
C(54)	C(55)	C(68)	C(69)	-76.4(5)
C(56)	C(55)	C(68)	C(70)	-129.8(4)
C(54)	C(55)	C(68)	C(70)	46.2(5)
C(52)	N(51)	C(72)	C(73)	177.4(4)
Ti(1)	N(51)	C(72)	C(73)	2.4(7)
C(52)	N(51)	C(72)	C(74)	-62.9(5)
Ti(1)	N(51)	C(72)	C(74)	122.0(5)
C(52)	N(51)	C(72)	C(75)	57.7(5)
Ti(1)	N(51)	C(72)	C(75)	-117.3(5)
C(76)	C(77)	C(78)	C(79)	173.1(8)
C(77)	C(78)	C(79)	C(80)	-179.8(8)
C(81)	C(82)	C(83)	C(84)	173.9(16)
C(82)	C(83)	C(84)	C(85)	179.1(16)
C(54)	C(59)	C(93)	C(61)	-47.7(5)
C(58)	C(59)	C(93)	C(61)	130.3(4)
C(54)	C(59)	C(93)	C(62)	76.0(5)
C(58)	C(59)	C(93)	C(62)	-105.9(4)
C(54)	C(59)	C(93)	C(63)	-164.0(4)
C(58)	C(59)	C(93)	C(63)	14.1(5)

Symmetry transformations used to generate equivalent atoms:

Table 6: Listing of Final SHELX Results File REM MSC03118 REM R1 = 0.0873 for 9219 Fo > 4sig(Fo) and 0.1245 for all 13721 data REM 767 parameters refined using 0 restraints REM Highest difference peak 1.646, deepest hole -0.576, 1-sigma level 0.088 REM MSC03118 REM R1 = 0.0871 for 9219 Fo > 4sig(Fo) and 0.1243 for all 13721 data REM 767 parameters refined using 0 restraints REM Highest difference peak 1.631, deepest hole -0.585, 1-sigma level 0.088 TITL MSC03118 CELL 0.71073 12.2970 13.1823 24.8428 103.400 92.806 91.863 ZERR 2.0000 0.0023 0.0027 0.0046 0.005 0.006 0.006 LATT 1 SFAC TI P N C H UNIT 2 2 10 154 264 MERG 2 FMAP 2 GRID PLAN 20 TEMP -146 SIZE 0.35 0.3 0.3 BOND CONF L.S. 4 ACTA 0.147300 3.712800 WGHT 0.26972 FVAR TI1 1 1.071053 -0.005901 -0.222483 11.00000 0.02185 0.02106 = 0.02139 0.00251 0.00606 0.00175 C.2 4 0.890938 -0.003469 -0.227128 11.00000 0.02383 0.02847 = 0.02823 0.00331 0.00814 0.00023 NЗ 3 0.798050 -0.004157 -0.235725 11.00000 0.03135 0.02844 = 0.03060 0.00142 0.01016 0.00339 4 0.681759 0.006635 -0.247186 11.00000 C4 0.02448 0.04147 =0.04067 0.00366 0.00871 0.00092 C.5 4 0.627916 0.026023 -0.191819 11.00000 0.03158 0.09177 =0.05836 0.00435 0.01806 0.00830 AFIX 137 5 -0.033983 -0.175289 11.00000 H5A 0.637597 -1.50000 11.00000 -1.50000 11.00000 -1.50000 5 0.549942 0.035568 -0.197884 H5B H5C 5 0.661661 0.088925 -0.166759 AFIX 0 C6 4 0.671418 0.100672 -0.272374 11.00000 0.03382 0.06312 = 0.08797 0.02924 -0.00500 0.00317 AFIX 137 0.700278 -0.245465 11.00000 -1.50000 H6A 5 0.163534 5 0.108714 -0.282116 11.00000 -1.50000 H6B 0.594503

H6C 5 0.712801 0.090450 -0.305794 11.00000 -1.50000 AFIX 0 0.03089 C7 4 0.637101 -0.092485 -0.287465 11.00000 0.05395 = 0.06362 -0.00365 0.00248 -0.00675 AFIX 137 H7A 5 0.672885 -0.100603 -0.322509 11.00000 -1.50000 0.558390 -0.088178 -0.294233 11.00000 -1.50000 H7B 5 0.651193 -0.152674 -0.271660 11.00000 -1.50000 H7C 5 0 AFIX Ν8 3 1.063784 0.001254 -0.303755 11.00000 0.02659 0.02429 =0.02090 0.00176 0.00375 0.00247 11.00000 С9 4 1.009425 0.075679 -0.324284 0.02583 0.02745 =0.00801 0.02785 0.00270 0.00015 C10 4 0.978241 0.064267 -0.379274 11.00000 0.04564 0.02327 =0.02946 -0.00023 -0.00013 0.00749 AFIX 43 H10 5 0.989701 -0.001598 -0.403126 11.00000 -1.20000 AFIX 0 C11 4 0.929960 0.141143 -0.404954 11.00000 0.04214 0.03159 =0.03265 0.00270 0.00173 0.00731 N12 3 0.891985 0.226093 -0.376212 11.00000 0.05377 0.03380 = 0.03768 0.01009 0.00739 0.01799 C13 4 0.857660 0.305255 -0.402352 11.00000 0.05126 0.03232 = 0.03219 0.00650 0.00522 0.01566 0.746489 0.321024 -0.407274 11.00000 C14 4 0.04820 0.03933 = 0.05065 0.01680 0.00337 0.00740 C15 4 0.712909 0.404001 -0.428942 11.00000 0.04039 0.04394 = 0.06020 0.01582 0.00434 0.01539 AFIX 43 H15 5 0.637630 0.417523 -0.431340 11.00000 -1.20000 AFIX 0 4 0.789257 0.467672 -0.447227 11.00000 C16 0.05747 0.02593 =0.04566 0.01183 -0.00020 0.00507 AFIX 43 H16 5 0.765422 0.521134 -0.464308 11.00000 -1.20000AFIX 0 C17 4 0.896565 0.453091 -0.440587 11.00000 0.05011 0.03098 = 0.04095 0.00636 0.00026 0.00154 AFIX 43 H17 5 0.947536 0.498413 -0.452033 11.00000 -1.20000 AFIX 0 C18 4 0.935058 0.373234 -0.417352 11.00000 0.04927 0.02854 =0.03041 -0.00055 0.00648 0.00820 1.055681 0.362395 -0.406178 11.00000 C19 4 0.04853 0.04201 =

0.01330 0.00701 0.05423 -0.00076 AFIX 13 5 H19 1.067776 0.287820 -0.406003 11.00000 -1.20000 AFIX 0 -0.449298 C20 4 0.392343 11.00000 1.126251 0.05673 0.14298 =0.06978 0.03431 0.01954 0.03165 AFIX 137 0.346077 -0.485693 11.00000 H20A 5 1.106802 -1.50000 H20B 5 1.203196 0.385455 -0.439109 11.00000 -1.50000 H20C 5 1.114147 0.464759 -0.450829 11.00000 -1.50000 AFIX 0 0.429505 11.00000 C21 4 1.093593 -0.349493 0.06138 0.07535 =0.06106 0.01674 -0.01450 -0.00957 AFIX 137 11.00000 H21A 5 1.091590 0.503407 -0.350280 -1.50000 11.00000 H21B 5 0.413073 -0.340073 -1.50000 1.168272 H21C 5 1.045339 0.415264 -0.321611 11.00000 -1.50000 AFIX 0 0.249736 -0.386771 11.00000 C22 4 0.664523 0.05011 0.05367 =0.07188 0.03168 0.00761 0.01075 AFIX 13 H22 5 0.699569 0.232470 -0.353020 11.00000 -1.20000 AFIX 0 C23 4 0.558355 0.301820 -0.369697 11.00000 0.06646 0.08388 = 0.09353 0.04631 0.03124 0.01665 AFIX 137 H23A 5 0.574937 0.371932 -0.346322 11.00000 -1.50000Н2ЗВ 5 0.517561 0.260046 -0.348922 11.00000 -1.50000 H23C 5 0.514455 0.306897 -0.402895 11.00000 -1.50000 AFIX 0 4 11.00000 C24 0.642839 0.146439 -0.430204 0.05814 0.06051 =0.10692 0.03630 0.00741 0.00196 AFIX 137 H24A 5 0.610910 0.160517 -0.464514 11.00000 -1.50000 H24B 5 0.592170 0.101171 -0.416132 11.00000 -1.50000 H24C 5 0.711595 0.111690 -0.437693 11.00000 -1.50000 0 AFIX C25 4 11.00000 0.929372 0.115958 -0.467663 0.06972 0.04055 =0.02797 0.00274 -0.00524 0.01917 AFIX 137 0.164750 H25A 5 0.883811 -0.481825 11.00000 -1.50000 0.044434 -0.482656 H25B 5 0.899956 11.00000 -1.50000 H25C 5 1.003968 0.122401 -0.479063 11.00000 -1.50000 AFIX 0 C26 4 0.989834 0.173617 -0.281989 11.00000 0.03971 0.02799 =0.02365 0.00398 0.00529 0.00472 AFIX 137 11.00000 H26A 5 1.024813 0.233474 -0.292507 -1.50000 H26B 5 1.020600 0.168354 -0.245646 11.00000 -1.50000 H26C 5 0.911274 0.183079 -0.280150 11.00000 -1.50000
AFIX 0 1.107769 -0.081378 -0.344968 C27 4 11.00000 0.02753 0.02691 = 0.01987 0.00084 -0.00031 0.00729 C28 1.054068 -0.179705 -0.362010 11.00000 4 0.03268 0.03022 = 0.02198 0.00131 0.00427 0.00263 C29 1.103244 -0.257964 11.00000 4 -0.400140 0.04089 0.02711 =0.03147 -0.00127 0.00004 0.00542 AFIX 43 H29 5 1.068424 -0.325540 -0.411157 11.00000 -1.20000 AFIX 0 4 1.199841 -0.239445 -0.421800 11.00000 C30 0.04125 0.03592 =0.03352 0.00157 0.00653 0.01335 AFIX 43 11.00000 -0.293707 -0.447207 -1.20000 Н30 5 1.232224 AFIX 0 C31 4 1.250467 -0.139814 -0.406166 11.00000 0.03338 0.04111 = 0.03421 0.00744 0.00586 0.00753 AFIX 43 Н31 5 1.316794 -0.126696 -0.421951 11.00000 -1.20000 AFIX 0 C32 4 1.206640 -0.059429 -0.368227 11.00000 0.02569 0.03373 = 0.02740 0.00774 -0.00088 0.00410 C33 4 1.261665 0.049111 -0.354820 11.00000 0.03081 0.03714 = 0.03712 0.00760 0.00765 -0.00197 AFIX 13 Н33 5 1.218833 0.095263 -0.326543 11.00000 -1.20000 AFIX 0 C34 4 1.260648 0.094386 -0.406359 11.00000 0.06140 0.04712 = 0.05367 0.02272 -0.00331 -0.01069 AFIX 137 H34A 5 1.302217 0.050503 -0.434803 11.00000 -1.50000 H34B 5 0.165349 1.293788 -0.396476 11.00000 -1.50000 H34C 5 1.185288 0.096257 -0.420753 11.00000 -1.50000 AFIX 0 C35 4 1.377949 0.050026 -0.330236 11.00000 0.03423 0.04772 =0.03918 0.01240 0.00546 -0.00681 AFIX 137 H35A 5 1.377553 0.020100 -0.297625 11.00000 -1.50000 0.122035 Н35В 5 1.408148 -0.319337 11.00000 -1.50000 H35C 5 1.422837 0.008530 -0.357957 11.00000 -1.50000 AFIX 0 C36 4 0.940576 -0.201847 -0.344310 11.00000 0.04560 0.03165 = 0.04767 -0.00973 0.01798 -0.00439 AFIX 13 5 0.922333 -0.140828 -0.314417 H36 11.00000 -1.20000 AFIX 0

0.857060 -0.211108 C37 4 -0.392413 11.00000 0.03544 0.06106 = 0.10590 0.02945 0.00798 0.00440 AFIX 137 H37A 5 0.873464 -0.270025 -0.422568 11.00000 -1.50000Н37В 5 0.859647 -0.146594 -0.405616 11.00000 -1.50000 11.00000 -1.50000 H37C 5 0.784123 -0.222688 -0.380128 AFIX 0 4 0.930660 -0.298431 -0.321610 11.00000 0.05518 C38 0.06339 = 0.04627 0.00667 0.00324 -0.02353 AFIX 137 H38A 5 0.859110 11.00000 -1.50000 -0.302166 -0.306274 H38B 5 0.987968 -0.295244 -0.292354 11.00000 -1.50000 H38C 5 0.938471 -0.360522 -0.351480 11.00000 -1.50000 0 AFIX 3 N40 1.151541 -0.134223 -0.213797 11.00000 0.02831 0.02576 =0.02694 0.00478 0.00506 0.00075 1.060055 -0.141143 C41 4 -0.193279 11.00000 0.02915 0.02139 =0.02909 0.00248 0.00369 -0.00049 C42 4 1.012612 -0.224675 -0.167321 11.00000 0.03922 0.03405 =0.03433 0.00820 0.01102 0.00078 AFIX 23 5 1.070571 11.00000 H42A -0.272696 -0.162418 -1.20000 H42B 5 0.954873 -0.265725 -0.193231 11.00000 -1.20000 AFIX 0 C43 4 0.964057 -0.182445 -0.110935 11.00000 0.04976 0.03588 =0.03123 0.00907 0.01465 -0.00146 C44 4 0.871447 -0.111643 -0.115866 11.00000 0.06527 0.06591 = 0.03434 0.05119 0.02373 0.01569 AFIX 137 H44A 5 0.836561 -0.093088 -0.080488 11.00000 -1.50000 H44B 5 0.817802 -0.147931 -0.145011 11.00000 -1.50000 H44C 5 0.900022 -0.048074 -0.125292 11.00000 -1.50000 AFIX 0 4 -0.123680 -0.069335 11.00000 0.07468 C45 1.053558 0.04800 = 0.02910 0.00313 0.01492 -0.01440 AFIX 137 1.081177 H45A 5 -0.062936 -0.081817 11.00000 -1.50000 11.00000 1.113221 -0.170090 -1.50000 H45B 5 -0.066644 H45C 5 -0.100378 -0.032904 1.023594 11.00000 -1.50000 AFIX 0 C47 4 1.249615 -0.200468 -0.217829 11.00000 0.03145 0.03453 =0.03312 0.00597 0.00593 0.00664 C48 4 1.331930 -0.153607 -0.250145 11.00000 0.02878 0.03438 = 0.04288 0.00876 0.00958 0.00764 AFIX 137 H48A 5 1.300551 -0.156453 -0.287523 11.00000 -1.50000

H48B 5 1.398171 -0.193415 -0.252646 11.00000 -1.50000 H48C 5 1.350034 -0.080798 11.00000 -1.50000 -0.231059 0 AFIX C49 4 1.217469 -0.312175 -0.249764 11.00000 0.04773 0.02901 = 0.04710 0.00497 0.01564 0.00723 AFIX 137 -0.341491 -0.230505 11.00000 -1.50000 H49A 5 1.161047 1.281525 -0.251960 11.00000 -1.50000 H49B 5 -0.354961 H49C 5 1.189257 -0.311574 -0.287267 11.00000 -1.50000 AFIX 0 C50 4 1.296240 -0.196372 -0.159568 11.00000 0.04968 0.05366 = 0.03570 0.01014 0.00841 0.01165 AFIX 137 1.311889 11.00000 H50A 5 -0.123485 -0.139878 -1.50000 1.363673 -0.234362 H50B 5 -0.161552 11.00000 -1.50000 H50C 5 1.243242 -0.228626 -0.139684 11.00000 -1.50000 AFIX 0 N51 3 1.075187 0.120519 -0.161484 11.00000 0.02229 0.02348 = 0.02465 -0.00009 0.00447 0.00173 C52 4 1.177638 0.102949 -0.170155 11.00000 0.03318 0.02260 =0.01831 0.00379 0.00423 0.00329 P53 2 1.315159 0.123503 -0.162746 11.00000 0.02152 0.02510 = 0.02680 -0.00121 0.00651 0.00170 C54 1.342552 0.253228 -0.110323 11.00000 0.01730 4 0.02629 =0.00540 0.02441 -0.00233 0.00070 C55 1.351532 0.256363 -0.052470 4 11.00000 0.01764 0.02696 = 0.03019 0.00090 0.00621 -0.00165 C.5.6 4 1.332857 0.351239 -0.015886 11.00000 0.02574 0.03159 = 0.02368 -0.00140 0.00567 -0.00126 AFIX 43 H56 5 1.333188 0.353195 0.022590 11.00000 -1.20000 AFIX 0 4 C57 1.313899 0.442535 -0.032702 11.00000 0.02276 0.02500 = 0.03377 -0.00408 0.00805 -0.00170 C58 4 1.327341 0.440476 -0.087746 11.00000 0.02525 0.02638 =0.00281 -0.00065 0.03698 0.00328 AFIX 43 -0.099455 H58 5 1.325024 0.504092 11.00000 -1.20000 0 AFIX C59 4 1.344373 0.347643 -0.127263 11.00000 0.02178 0.02872 =0.02984 0.00238 0.00268 -0.00053 0.920097 -0.278204 C60 4 -0.090898 11.00000 0.05926 0.05156 = 0.01204 0.01138 -0.01087 0.03543 AFIX 137 H60A 5 0.980916 -0.320856 -0.084300 11.00000 -1.50000

-0.320029 H60B 5 0.868331 -0.119316 11.00000 -1.50000 H60C 5 -0.254218 11.00000 -1.50000 0.883274 -0.056420 0 AFIX 1.469074 C61 4 0.295874 -0.205733 11.00000 0.03681 0.04631 = 0.03159 0.01088 0.01137 -0.00198 AFIX 137 1.452745 0.221091 -0.209937 11.00000 -1.50000 H61A 5 -0.177754 H61B 5 1.529236 0.319075 11.00000 -1.50000 H61C 5 1.489932 0.308588 -0.241252 11.00000 -1.50000 AFIX 0 C62 4 1.271403 0.319620 -0.229738 11.00000 0.04543 0.05078 = 0.03213 0.01415 0.00429 0.00084 AFIX 137 H62A 5 1.290376 0.330569 -0.265892 11.00000 -1.50000 1.207547 0.359402 -0.217489 H62B 5 11.00000 -1.50000 H62C 5 1.254720 0.245194 -0.232904 11.00000 -1.50000 AFIX 0 C63 4 1.396156 0.471820 -0.188856 11.00000 0.06394 0.04020 = 0.04706 0.01628 0.01060 -0.00536 AFIX 137 -1.50000 H63A 5 1.425715 0.473742 -0.224548 11.00000 11.00000 н63в 5 1.450495 0.502372 -0.158803 -1.50000 11.00000 H63C 5 1.330124 0.511880 -0.184166 -1.50000 AFIX 0 C64 4 1.280051 0.540059 0.008721 11.00000 0.03013 0.02512 = 0.04382 -0.00720 0.01119 0.00081 11.00000 C65 4 1.171614 0.513520 0.030678 0.04913 0.03666 =0.08460 -0.01532 0.03831 -0.00069 AFIX 137 -0.000030 H65A 5 1.116018 0.495292 11.00000 -1.50000 H65B 5 1.149354 0.574024 0.058282 11.00000 -1.50000 H65C 5 1.179813 0.454195 0.047887 11.00000 -1.50000 AFIX 0 4 C66 1.366520 0.574172 0.056167 11.00000 0.05902 0.04448 = 0.04800 -0.01384 0.00650 0.00272 AFIX 137 1.340345 H66A 5 0.632170 0.084053 11.00000 -1.50000 H66B 5 1.433728 0.596809 0.041855 11.00000 -1.50000 H66C 5 1.381089 0.515471 0.073102 11.00000 -1.50000 0 AFIX 4 C67 1.262659 0.632857 -0.018582 11.00000 0.06995 0.03494 = 0.06102 -0.00699 0.01667 0.00883 AFIX 137 H67A 5 1.205119 0.613545 -0.048295 11.00000 -1.50000 5 Н67В 1.330591 0.650526 -0.034067 11.00000 -1.50000 -1.50000 5 11.00000 H67C 1.241242 0.693330 0.009307 0 AFIX 4 1.387607 0.163296 -0.027994 11.00000 C68 0.03232 0.02980 =

0.03093 0.00601 0.00526 0.00310 1.298748 0.076350 -0.033254 11.00000 0.04322 C69 4 0.03201 = 0.01102 0.00875 0.00272 0.03320 AFIX 137 H69A 5 1.329372 0.017496 -0.020709 11.00000 -1.50000 1.271570 H69B 5 0.052972 -0.072066 11.00000 -1.50000 1.238614 0.103115 11.00000 -1.50000 H69C 5 -0.010340 AFIX 0 C70 4 1.489424 0.117810 -0.057229 11.00000 0.03543 0.03604 = 0.03358 0.00669 0.00292 0.00848 AFIX 137 1.518168 H70A 5 0.064564 -0.039341 11.00000 -1.50000 Н70В 5 1.545231 0.173829 -0.054537 11.00000 -1.50000 H70C 5 1.469408 0.086207 -0.096337 11.00000 -1.50000 AFIX 0 4 1.422509 0.199269 0.033719 11.00000 0.04911 C71 0.03916 =0.03595 0.00825 0.00625 0.00401 AFIX 137 0.220554 0.054882 11.00000 H71A 5 1.358540 -1.50000
 11.00000
 -1.50000

 11.00000
 -1.50000
H71B 5 1.475425 0.258526 0.039398 H71C 5 1.455897 0.141748 0.046371 AFIX 0 C72 4 1.022467 0.207054 -0.121862 11.00000 0.02545 0.02602 = 0.02622 -0.00662 0.00714 0.00456 C73 4 0.899439 0.191544 -0.131117 11.00000 0.02952 0.03392 = 0.03691 -0.00493 0.01235 0.00497 AFIX 137 H73A 5 0.877837 0.194256 -0.169238 11.00000 -1.50000 H73B 5 0.864597 0.246889 -0.105184 11.00000 -1.50000 11.00000 -1.50000 H73C 5 0.876513 0.123481 -0.124900 0 AFIX C74 4 1.056275 0.202942 -0.062708 11.00000 0.03683 0.04160 = 0.02751 -0.00160 0.01325 0.00630 AFIX 137 H74A 5 1.034899 0.134336 -0.056691 11.00000 -1.50000 H74B 5 1.020219 0.257300 -0.036749 11.00000 -1.50000 H74C 5 1.135487 0.214542 -0.056574 11.00000 -1.50000 AFIX 0 C75 4 1.058689 0.311668 -0.132806 11.00000 0.02775 0.03034 = 0.03938 -0.00097 0.00912 0.00302 AFIX 137 H75A 5 1.138334 0.320137 -0.128395 11.00000 -1.50000 Н75В 5 1.026499 0.368195 -0.106396 11.00000 -1.50000 -1.50000 H75C 5 1.034540 0.313985 -0.170668 11.00000 AFIX 0 C76 4 1.586858 -0.168668 -0.459213 11.00000 0.09107 0.16011 =0.10399 0.05585 -0.01834 -0.01773 AFIX 137 H76A 5 1.536866 -0.120317 -0.438149 11.00000 -1.50000

1.592489 -0.154877 -0.496105 Н76В .5 11.00000 -1.50000 H76C 5 1.658994 -0.158847 -0.439679 11.00000 -1.50000 0 AFIX 0.16219 C77 4 1.544999 -0.277123 -0.464802 11.00000 0.11477 = 0.07227 0.02793 -0.01267 0.01099 23 AFIX H77A 5 1.601692 -0.324822 -0.480868 11.00000 -1.20000 Н77В 5 1.480844 -0.290317 -0.491541 11.00000 -1.20000 0 AFIX C78 4 1.512662 -0.304471 -0.412342 11.00000 0.06272 0.09975 =0.00247 -0.00572 0.00504 0.07440 AFIX 23 -0.299515 11.00000 H78A 5 -0.387386 -1.20000 1.578882 H86 5 1.463003 -0.251310 -0.393913 11.00000 -1.20000 AFIX 0 4 1.458902 -0.408387 -0.418218 11.00000 C79 0.07840 0.07603 =0.11247 -0.00218 -0.01633 0.02988 AFIX 23 H79A 5 1.508488 -0.461918 -0.436343 11.00000 -1.20000 H79B 5 1.392501 -0.413729 -0.443088 11.00000 -1.20000 AFIX 0 C80 4 1.426955 -0.433251 -0.364140 11.00000 0.14422 0.11731 = 0.13573 0.03198 0.05973 0.02221 AFIX 137 H80A 5 1.492839 -0.440761 -0.341817 11.00000 -1.50000 H80B 5 1.382371 -0.498554 -0.372194 11.00000 -1.50000 11.00000 -1.50000 H80C 5 1.385075 -0.376456 -0.343571 0 AFIX C81 4 0.410212 -0.233693 11.00000 0.17390 1.816232 AFIX 137 H81A 5 1.895135 0.411095 -0.225688 11.00000 -1.50000 H81B 5 1.793501 0.347667 -0.262436 11.00000 -1.50000 H81C 5 1.778504 0.409504 -0.199927 11.00000 -1.50000 AFIX 0 C82 4 1.791667 0.493281 -0.251042 11.00000 0.19998 AFIX 23 0.471412 -0.291021 11.00000 -1.20000 H82A 5 1.769394 H82B 5 1.858361 0.539095 -0.247249 11.00000 -1.20000 AFIX 0 C83 4 1.709750 0.551725 -0.224110 11.00000 0.15405 AFIX 23 11.00000 H83A 5 1.643707 0.504521 -0.231247 -1.20000 H83B 5 1.730083 0.562855 -0.184049 11.00000 -1.20000 AFIX 0 C84 4 0.645191 -0.230986 11.00000 1.675792 0.16977 AFIX 23 H84A 5 1.653939 0.636646 -0.270727 11.00000 -1.20000 5 H84B 1.739448 0.695359 -0.222493 11.00000 -1.20000 AFIX 0 11.00000 C85 4 1.587665 0.692620 -0.199374 0.12939 AFIX 137 H85A 5 -0.214756 -1.50000 1.518615 0.655562 11.00000 H85B 5 1.584747 0.765939 -0.201237 11.00000 -1.50000

1.599777 0.688574 -0.160657 H85C 5 11.00000 -1.50000 AFIX 0 C93 4 1.367803 0.356721 -0.187347 11.00000 0.03400 0.03501 = 0.03138 0.00843 0.00442 -0.00137 HKLF 4 REM MSC03118 REM R1 = 0.0869 for 9219 Fo > 4sig(Fo) and 0.1241 for all 13721 data 767 parameters refined using 0 restraints REM END WGHT 0.1472 3.5090 REM Highest difference peak 1.629, deepest hole -0.586, 1-sigma level 0.088 Q1 1 0.9926 0.0010 -0.2284 11.00000 0.05 1.63 1 1.2407 0.1350 -0.1675 11.00000 0.05 Q2 1.07 Q3 1 1.9246 0.4858 -0.2233 11.00000 0.05 1.07 1 04 1.0623 -0.0806 -0.2177 11.00000 0.05 0.65 0.8134 0.2257 -0.3946 11.00000 0.05 Q5 1 0.57 0.9057 0.0727 -0.3903 11.00000 0.05 1.1571 -0.0265 -0.2139 11.00000 0.05 1.7387 0.4818 -0.2086 11.00000 0.05 Q.6 1 0.56 Q7 1 0.53 Q8 1 0.52 0.6423 0.3945 -0.4558 11.00000 0.05 Q9 1 0.50 1.6432 0.5078 -0.2881 11.00000 0.05 Q10 1 0.48 1.6866 0.5223 -0.2714 11.00000 0.05 0.48 Q11 1 0.9847 0.0067 -0.3074 11.00000 0.05 Q12 0.46 1 0.7149 0.4622 -0.4663 11.00000 0.05 Q13 0.46 1 1.7772 0.4377 -0.1829 11.00000 0.05 Q14 1 0.46 1.1007 0.3164 -0.4660 11.00000 0.05 Q15 1 0.45 Q16 1.7634 0.5997 -0.2183 11.00000 0.05 0.45 1 Q17 1 0.7843 -0.2178 -0.4085 11.00000 0.05 0.44 Q18 1 1.1332 -0.0575 -0.3691 11.00000 0.05 0.44 Q19 1 1.5577 0.6088 -0.2970 11.00000 0.05 0.43 Q20 1 0.8652 0.3838 -0.4301 11.00000 0.05 0.43

MSC03118 03/09/1911:31:45.8 12.297000 13.182300 24.842800 -0.231750 -0.048950 -0.032510 0.710730 0.00010 0.00270 0.00460 0.00008 0.00010 0.00230 3908.77 P 1BAR 1 2 4 711111001111 0 0 0 0 0 0 5 2 0 RHF 9.7595 7.8508 7.3558 .5000 1.699135.6338 1.9021116.105 1.2807 ΤI .248 .446 ΤТ MO K ALPHA 1 RHF 6.4345 1.9067 4.179127.1570 1.7800 .5260 1.490868.1645 1.1149 Ρ .095 .090 Ρ MO K ALPHA 1 RHF 12.2126 .0057 3.1322 9.8933 2.012528.9975 1.1663 .5826-11.529 Ν .004 .003 Ν MO K ALPHA 1 CVAL HF 2.2606922.69071.56165.6566651.050759.75618.83925955.5949.286977 C MO K ALPHA 1 .002 .002 H SDS .49300210.5109.32291226.1257.1401913.14236.04081057.7997.003038 .000 .000 h MO K ALPHA 1 6 77 1 132 0 0 0 1 7 5 22 1 15 0 0 0 0 290 0 0 0 1 0 0 0 0 0 0 0.000000000 1 0 0 0.000000000 0 1 0 0.000000000 0 0 1 0.000000000 0 -1 0 0.000000000 -1 0 0 0.000000000 0 0 -1 1000 100000 0.000000 1.071053 -0.005901 -0.222483 TI(1) 155501 0.002865 0.002533 0.000725 0.000220 0.000404 0.000160 155501 C(2) 4000 100000 0.000000 0.890938 -0.003469 -0.227128 255501 0.003125 0.003424 0.000957 0.000029 0.000543 0.000211 255501 N(3) 3000 100000 0.000000 0.798050 -0.004157 -0.235725 355501 0.004111 0.003421 0.001038 0.000426 0.000677 0.000091 355501 C(4) 4000 100000 0.000000 0.681759 0.006635 -0.247186 455501 0.003210 0.004988 0.001379 0.000116 0.000581 0.000234 455501 4000 100000 0.000000 0.627916 0.026023 -0.191819 C(5) 555501 0.004141 0.011038 0.001979 0.001042 0.001204 0.000278 555501 4000 100000 0.000000 0.671418 0.100672 -0.272374 C(6) 655501 0.004434 0.007592 0.002983 0.000398 -0.000333 0.001868 655501 C(7) 4000 100000 0.000000 0.637101 -0.092485 -0.287465 755501 0.004050 0.006489 0.002158 -0.000848 0.000165 -0.000233 755501 3000 100000 0.000000 1.063784 0.001254 -0.303755 N(8) 855501 0.003486 0.002922 0.000709 0.000310 0.000250 0.000112 855501 4000 100000 0.000000 1.009425 0.075679 -0.324284 C(9) 955501 0.003387 0.003302 0.000944 0.000019 0.000534 0.000172 955501

C(10) 1055501	4000 10	0000	0.000000	0.978241	0.064267	-0.379274
0.005984	0.002799	0.000999	0.000941	-0.000009	-0.000015	
C(11) 1155501	4000 10	0000	0.000000	0.929960	0.141143	-0.404954
0.005525	0.003800	0.001107	0.000918	0.000115	0.000172	
1155501 N(12)	3000 10	000	0 00000	0 891985	0 226093	-0 376212
1255501	5000 10	0000	0.000000	0.091903	0.220095	0.370212
0.007050	0.004066	0.001278	0.002259	0.000493	0.000644	
1255501	4000 10	2000	0 000000	0 957660	0 205255	0 400050
1355501	4000 10	5000	0.000000	0.837880	0.303233	-0.402352
0.006721 1355501	0.003888	0.001092	0.001967	0.000348	0.000415	
C(14)	4000 10	0000	0.00000	0.746489	0.321024	-0.407274
0.006320	0.004731	0.001718	0.000929	0.000225	0.001073	
C(15)	4000 10	0000	0.00000	0.712909	0.404001	-0.428942
1555501	0 005205	0 002042	0 001022	0 000280	0 001010	
1555501	0.005265	0.002042	0.001933	0.000289	0.001010	
C(16) 1655501	4000 10	0000	0.000000	0.789257	0.467672	-0.447227
0.007535	0.003119	0.001548	0.000637	-0.000013	0.000756	
C(17)	4000 10	0000	0.000000	0.896565	0.453091	-0.440587
1755501						
0.006570	0.003726	0.001389	0.000193	0.000017	0.000406	
C(18)	4000 10	0000	0.00000	0.935058	0.373234	-0.417352
1855501	1000 10				0.070201	0.11/001
0.006460	0.003433	0.001031	0.001030	0.000432	-0.000035	
1855501 C (19)	4000 10	0000	0 000000	1 055681	0 362395	-0 406178
1955501	1000 10	0000	0.000000	1.000001	0.302393	0.1001/0
0.006363	0.005053	0.001839	0.000880	-0.000051	0.000849	
1955501 C(20)	4000 10	2000	0 000000	1 126251	0 392313	-0 119298
2055501	1000 10	0000	0.000000	1.120251	0.392343	0.449290
0.007438	0.017198	0.002366	0.003975	0.001303	0.002191	
2055501	4000 10	2000	0 000000	1 002502	0 420505	0 240402
2155501	4000 10	5000	0.000000	1.093595	0.429505	-0.349493
0.008048	0.009063	0.002071	-0.001202	-0.000967	0.001069	
2155501	4000 10			0 664500	0 040506	0 00 000
C(22) 2255501	4000 10	0000	0.000000	0.664523	0.249/36	-0.386//1
0.006570	0.006456	0.002438	0.001350	0.000507	0.002023	
2255501						
C(23) 2355501	4000 10	0000	0.00000	0.558355	0.301820	-0.369697
0.008714	0.010089	0.003172	0.002091	0.002083	0.002958	
2355501						

C(24) 2455501	4000	1000	000	0.000000	0.642839	0.146439	-0.430204
0.007623	0.007	278	0.003626	0.000246	0.000494	0.002318	
C(25) 2555501	4000	1000	000	0.000000	0.929372	0.115958	-0.467663
0.009141	0.004	878	0.000949	0.002407	-0.000349	0.000175	
C (26)	4000	1000	000	0.000000	0.989834	0.173617	-0.281989
0.005207	0.003	367	0.000802	0.000593	0.000353	0.000254	
C (27)	4000	1000	000	0.000000	1.107769	-0.081378	-0.344968
0.003610	0.003	237	0.000674	0.000916	-0.000021	0.000054	
C(28)	4000	1000	000	0.000000	1.054068	-0.179705	-0.362010
0.004285	0.003	635	0.000745	0.000330	0.000285	0.000084	
C(29)	4000	1000	000	0.000000	1.103244	-0.257964	-0.400140
0.005361	0.003	261	0.001067	0.000681	0.000003	-0.000081	
C(30)	4000	1000	000	0.000000	1.199841	-0.239445	-0.421800
0.005409	0.004	321	0.001137	0.001677	0.000435	0.000100	
C(31)	4000	1000	000	0.000000	1.250467	-0.139814	-0.406166
0.004377	0.004	945	0.001160	0.000946	0.000391	0.000475	
C(32)	4000	1000	000	0.000000	1.206640	-0.059429	-0.368227
0.003368	0.004	057	0.000929	0.000515	-0.000059	0.000494	
C(33)	4000	1000	000	0.000000	1.261665	0.049111	-0.354820
0.004040	0.004	467	0.001259	-0.000247	0.000510	0.000485	
C(34)	4000	1000	000	0.000000	1.260648	0.094386	-0.406359
0.008051	0.005	668	0.001820	-0.001342	-0.000221	0.001451	
C(35)	4000	1000	000	0.000000	1.377949	0.050026	-0.330236
0.004488	0.005	740	0.001329	-0.000855	0.000364	0.000792	
C (36)	4000	1000	000	0.000000	0.940576	-0.201847	-0.344310
0.005979	0.003	807	0.001617	-0.000551	0.001199	-0.000621	
C(37)	4000	1000	000	0.000000	0.857060	-0.211108	-0.392413
0.004647 3755501	0.007	345	0.003591	0.000553	0.000532	0.001881	

C(38) 3855501	4000	1000	000	0.00000	0.930660	-0.298431	-0.321610
0.007235 3855501	0.007	625	0.001569	-0.002955	0.000216	0.000426	
N(40) 3955501	3000	1000	000	0.000000	1.151541	-0.134223	-0.213797
0.003712	0.003	099	0.000914	0.000094	0.000337	0.000305	
C (41)	4000	1000	000	0.000000	1.060055	-0.141143	-0.193279
0.003822	0.002	573	0.000987	-0.000062	0.000246	0.000158	
4055501 C(42) 4155501	4000	1000	000	0.00000	1.012612	-0.224675	-0.167321
0.005142 4155501	0.004	096	0.001164	0.000098	0.000735	0.000524	
C(43) 4255501	4000	1000	000	0.000000	0.964057	-0.182445	-0.110935
0.006524	0.004	316	0.001059	-0.000183	0.000977	0.000579	
4255501 C (44)	4000	1000	000	0.000000	0.871447	-0.111643	-0.115866
4355501 0.008558 4355501	0.007	928	0.001736	0.001970	0.002290	0.001516	
C (45)	4000	1000	000	0.000000	1.053558	-0.123680	-0.069335
0.009792	0.005	774	0.000987	-0.001808	0.000995	0.000200	
C(47)	4000	1000	000	0.000000	1.249615	-0.200468	-0.217829
4555501 0.004124	0.004	153	0.001123	0.000834	0.000395	0.000381	
4555501 C(48)	4000	1000	000	0.000000	1.331930	-0.153607	-0.250145
4655501 0.003774	0.004	135	0.001454	0.000959	0.000639	0.000559	
4655501 C(49)	4000	1000	000	0.000000	1.217469	-0.312175	-0.249764
0.006258	0.003	489	0.001597	0.000908	0.001043	0.000317	
4/55501 C(50)	4000	1000	000	0.000000	1.296240	-0.196372	-0.159568
4855501 0.006514	0.006	454	0.001211	0.001463	0.000561	0.000648	
4855501 N(51)	3000	1000	000	0.000000	1.075187	0.120519	-0.161484
4955501 0.002923	0.002	824	0.000836	0.000217	0.000298	-0.000006	
4955501 C(52)	4000	1000	000	0.00000	1.177638	0.102949	-0.170155
0.004350	0.002	718	0.000621	0.000413	0.000282	0.000242	
2022201 P(53) 5155501	2000	1000	000	0.00000	1.315159	0.123503	-0.162746
0.002822	0.003	019	0.000909	0.000213	0.000434	-0.000077	

C(54) 5255501	4000	1000	000	0.00000	1.342552	0.253228	-0.110323
0.002268	0.003	162	0.000828	0.000088	0.000360	-0.000149	
C(55) 5355501	4000	1000	000	0.000000	1.351532	0.256363	-0.052470
0.002313	0.0032	243	0.001024	-0.000207	0.000414	0.000057	
5355501 C(56) 5455501	4000	1000	000	0.00000	1.332857	0.351239	-0.015886
0.003375	0.003	800	0.000803	-0.000158	0.000378	-0.000089	
5455501 C(57) 5555501	4000	1000	000	0.000000	1.313899	0.442535	-0.032702
0.002984	0.003	007	0.001145	-0.000213	0.000537	-0.000261	
C(58) 5655501	4000	1000	000	0.000000	1.327341	0.440476	-0.087746
0.003311	0.003	173	0.001254	-0.000082	0.000187	0.000209	
5655501 C(59)	4000	1000	000	0.000000	1.344373	0.347643	-0.127263
5755501 0.002856 5755501	0.003	455	0.001012	-0.000067	0.000179	0.000152	
C(60)	4000	1000	000	0.000000	0.920097	-0.278204	-0.090898
0.007770	0.0062	202	0.001202	-0.001365	0.000759	0.000769	
C(61)	4000	1000	000	0.00000	1.469074	0.295874	-0.205733
0.004826	0.005	570	0.001071	-0.000249	0.000758	0.000695	
C(62) 6055501	4000	1000	000	0.00000	1.271403	0.319620	-0.229738
0.005957	0.0063	108	0.001090	0.000105	0.000286	0.000904	
C(63)	4000	1000	000	0.000000	1.396156	0.471820	-0.188856
0.008384	0.0048	835	0.001596	-0.000673	0.000707	0.001040	
6155501 C(64)	4000	1000	000	0.000000	1.280051	0.540059	0.008721
6255501 0 003951	0 0030	022	0 001486	0 000102	0 000746	-0 000460	
6255501	4000	1000	0.001100	0.000102	1 171014	0 512520	0 000670
6355501	4000	1000	000	0.000000	1.1/1614	0.513520	0.030678
0.006442	0.004	410	0.002869	-0.000087	0.002555	-0.000978	
C(66) 6455501	4000	1000	000	0.000000	1.366520	0.574172	0.056167
0.007739	0.0053	350	0.001628	0.000342	0.000433	-0.000884	
6455501 C(67) 6555501	4000	1000	000	0.00000	1.262659	0.632857	-0.018582
0.009172	0.0042	203	0.002069	0.001109	0.001112	-0.000446	

C(68) 6655501	4000	1000	000	0.000000	1.387607	0.163296	-0.027994
0.004238 6655501	0.003	584	0.001049	0.000389	0.000351	0.000384	
C(69) 6755501	4000	1000	000	0.000000	1.298748	0.076350	-0.033254
0.005667	0.003	850	0.001126	0.000342	0.000583	0.000704	
C(70)	4000	1000	000	0.000000	1.489424	0.117810	-0.057229
0.004645	0.004	335	0.001139	0.001065	0.000195	0.000427	
C(71) 6955501	4000	1000	000	0.000000	1.422509	0.199269	0.033719
0.006439	0.004	710	0.001219	0.000504	0.000417	0.000527	
C(72) 7055501	4000	1000	000	0.000000	1.022467	0.207054	-0.121862
0.003337	0.003	130	0.000889	0.000573	0.000476	-0.000423	
C (73)	4000	1000	000	0.00000	0.899439	0.191544	-0.131117
7155501 0.003871 7155501	0.004	080	0.001252	0.000624	0.000824	-0.000315	
C(74)	4000	1000	000	0.000000	1.056275	0.202942	-0.062708
0.004829	0.005	004	0.000933	0.000791	0.000884	-0.000102	
C (75)	4000	1000	000	0.000000	1.058689	0.311668	-0.132806
0.003638	0.003	649	0.001336	0.000379	0.000608	-0.000062	
7355501 C(76)	4000	1000	000	0.000000	1.586858	-0.168668	-0.459213
7455501 0.011941	0.019	259	0.003527	-0.002227	-0.001223	0.003567	
7455501 C(77)	4000	1000	000	0.00000	1.544999	-0.277123	-0.464802
7555501	0 013	805	0 002451	0 001380	-0 000845	0 001784	
7555501	4000	1000	0.002101	0 000000	1 512662	-0 204471	_0 /122/2
7655501	4000	1000		0.000000	1.512002	-0.304471	-0.412342
0.008224 7655501	0.011	998	0.002523	0.000633	-0.000381	0.000158	
C(79) 7755501	4000	1000	000	0.00000	1.458902	-0.408387	-0.418218
0.010280 7755501	0.009	145	0.003814	0.003752	-0.001089	-0.000139	
C(80) 7855501	4000	1000	000	0.000000	1.426955	-0.433251	-0.364140
0.018910	0.014	111	0.004603	0.002789	0.003983	0.002043	
C(81) 7955501 13.730594	4000		0	0.000000	1.816232	0.410212	-0.233693
TUCCCEI							

C(82) 8055501 15.789789	4000	0	0.000000	1.791667	0.493281	-0.251042
8055501 C(83) 8155501	4000	0	0.000000	1.709750	0.551725	-0.224110
12.165501 8155501 C(84) 8255501	4000	0	0.000000	1.675792	0.645191	-0.230986
8255501 C (85) 8355501 10.216226	4000	0	0.000000	1.587665	0.692620	-0.199374
8355501 C(93) 8455501	4000 100	0000	0.000000	1.367803	0.356721	-0.187347
0.004458	0.004211	0.001064	-0.000172	0.000295	0.000538	
8455501 H(5A) 8555501 7.353257	5000	0	0.000000	0.637597	-0.033983	-0.175289
8555501 H(5B) 8655501 7.353257	5000	0	0.000000	0.549942	0.035568	-0.197884
8655501 H(5C) 8755501 7 353257	5000	0	0.000000	0.661661	0.088925	-0.166759
8755501 H(6A) 8855501	5000	0	0.000000	0.700278	0.163534	-0.245465
7:100849 8855501 H(6B) 8955501	5000	0	0.000000	0.594503	0.108714	-0.282116
7.106849 8955501 H(6C) 9055501 7.106849	5000	0	0.000000	0.712801	0.090450	-0.305794
9055501 H(7A) 9155501 6.222148	5000	0	0.000000	0.672885	-0.100603	-0.322509
9155501 H(7B) 9255501 6.222148	5000	0	0.000000	0.558390	-0.088178	-0.294233
9255501 H(7C) 9355501 6.222148 9355501	5000	0	0.000000	0.651193	-0.152674	-0.271660

H(10) 9455501 3.200759	5000	0	0.000000	0.989701	-0.001598	-0.403126
9455501 H(15) 9555501 4,474964	5000	0	0.000000	0.637630	0.417523	-0.431340
9555501 H(16) 9655501	5000	0	0.000000	0.765422	0.521134	-0.464308
4.025797 9655501 H(17)	5000	0	0.000000	0.947536	0.498413	-0.452033
9755501 3.894327 9755501						
H(19) 9855501 4.541831	5000	0	0.000000	1.067776	0.287820	-0.406003
9855501 H(20A) 9955501 10.320779	5000	0	0.000000	1.106802	0.346077	-0.485693
H(20B) 10055501 10.320779	5000	0	0.000000	1.203196	0.385455	-0.439109
10055501 H(20C) 10155501 10.320779	5000	0	0.000000	1.114147	0.464759	-0.450829
10155501 H(21A) 10255501 7.898503	5000	0	0.000000	1.091590	0.503407	-0.350280
10255501 H(21B) 10355501 7.898503	5000	0	0.000000	1.168272	0.413073	-0.340073
10355501 H(21C) 10455501 7.898503	5000	0	0.000000	1.045339	0.415264	-0.321611
10455501 H(22) 10555501 5.253243	5000	0	0.000000	0.699569	0.232470	-0.353020
10555501 H(23A) 10655501 8.990538	5000	0	0.000000	0.574937	0.371932	-0.346322
H(23B) 10755501 8.990538 10755501	5000	0	0.000000	0.517561	0.260046	-0.348922

H(23C) 10855501 8.990538	5000	0	0.00000	0.514455	0.306897	-0.402895
10855501 H(24A) 10955501 8.572192	5000	0	0.000000	0.610910	0.160517	-0.464514
10955501 H(24B) 11055501 8.572192	5000	0	0.000000	0.592170	0.101171	-0.416132
11055501 H(24C) 11155501 8.572192	5000	0	0.000000	0.711595	0.111690	-0.437693
11155501 H(25A) 11255501 5.547700	5000	0	0.000000	0.883811	0.164750	-0.481825
11255501 H(25B) 11355501 5 547700	5000	0	0.000000	0.899956	0.044434	-0.482656
11355501 H(25C) 11455501	5000	0	0.000000	1.003968	0.122401	-0.479063
5.547700 11455501 H(26A) 11555501	5000	0	0.000000	1.024813	0.233474	-0.292507
3.623992 11555501 H(26B) 11655501	5000	0	0.000000	1.020600	0.168354	-0.245646
3.623992 11655501 H(26C) 11755501	5000	0	0.000000	0.911274	0.183079	-0.280150
3.623992 11755501 H(29) 11855501	5000	0	0.000000	1.068424	-0.325540	-0.411157
3.265781 11855501 H(30) 11955501	5000	0	0.000000	1.232224	-0.293707	-0.447207
3.558931 11955501 H(31) 12055501	5000	0	0.00000	1.316794	-0.126696	-0.421951
3.429360 12055501 H(33) 12155501	5000	0	0.000000	1.218833	0.095263	-0.326543
3.32443/ 12155501						

H(34A) 12255501 6.252198	5000	0	0.000000	1.302217	0.050503	-0.434803
12255501 H(34B) 12355501 6.252198	5000	0	0.000000	1.293788	0.165349	-0.396476
12355501 H(34C) 12455501 6.252198	5000	0	0.000000	1.185288	0.096257	-0.420753
12455501 H(35A) 12555501 4.748164	5000	0	0.000000	1.377553	0.020100	-0.297625
12555501 H(35B) 12655501 4.748164	5000	0	0.000000	1.408148	0.122035	-0.319337
12655501 H(35C) 12755501 4.748164	5000	0	0.000000	1.422837	0.008530	-0.357957
12755501 H(36) 12855501 4.204290	5000	0	0.000000	0.922333	-0.140828	-0.314417
12855501 H(37A) 12955501 7 776422	5000	0	0.000000	0.873464	-0.270025	-0.422568
12955501 H(37B) 13055501 7.776422	5000	0	0.000000	0.859647	-0.146594	-0.405616
13055501 H(37C) 13155501 7.776422	5000	0	0.000000	0.784123	-0.222688	-0.380128
13155501 H(38A) 13255501 6.694994	5000	0	0.000000	0.859110	-0.302166	-0.306274
13255501 H(38B) 13355501 6.694994	5000	0	0.000000	0.987968	-0.295244	-0.292354
13355501 H(38C) 13455501 6.694994	5000	0	0.000000	0.938471	-0.360522	-0.351480
13455501 H(42A) 13555501 3.368572 13555501	5000	0	0.000000	1.070571	-0.272696	-0.162418

H(42B) 13655501 3.368572	5000	0	0.00000	0.954873	-0.265725	-0.193231
13655501 H(44A) 13755501 6.847742	5000	0	0.000000	0.836561	-0.093088	-0.080488
13755501 H(44B) 13855501 6.847742	5000	0	0.000000	0.817802	-0.147931	-0.145011
13855501 H(44C) 13955501 6.847742	5000	0	0.000000	0.900022	-0.048074	-0.125292
13955501 H(45A) 14055501 6.104016	5000	0	0.000000	1.081177	-0.062936	-0.081817
14055501 H(45B) 14155501 6.104016	5000	0	0.000000	1.113221	-0.170090	-0.066644
14155501 H(45C) 14255501 6.104016	5000	0	0.000000	1.023594	-0.100378	-0.032904
14255501 H(48A) 14355501 4.145154	5000	0	0.000000	1.300551	-0.156453	-0.287523
14355501 H(48B) 14455501 4.145154	5000	0	0.000000	1.398171	-0.193415	-0.252646
14455501 H(48C) 14555501 4.145154	5000	0	0.000000	1.350034	-0.080798	-0.231059
14555501 H(49A) 14655501 4.899156	5000	0	0.000000	1.161047	-0.341491	-0.230505
H (49B) 14755501 4.899156	5000	0	0.000000	1.281525	-0.354961	-0.251960
H (49C) 14855501 4.899156	5000	0	0.000000	1.189257	-0.311574	-0.287267
H(50A) 14955501 5.446645 14955501	5000	0	0.000000	1.311889	-0.123485	-0.139878

H(50B) 15055501 5.446645	5000	0	0.000000	1.363673	-0.234362	-0.161552
15055501 H(50C) 15155501 5.446645	5000	0	0.000000	1.243242	-0.228626	-0.139684
15155501 H(56) 15255501 2.672323	5000	0	0.000000	1.333188	0.353195	0.022590
15255501 H(58) 15355501	5000	0	0.000000	1.325024	0.504092	-0.099455
2.863175 15355501 H(60A) 15455501 5.738369	5000	0	0.000000	0.980916	-0.320856	-0.084300
15455501 H(60B) 155555501 5.738369	5000	0	0.000000	0.868331	-0.320029	-0.119316
H(60C) 15655501 5.738369	5000	0	0.000000	0.883274	-0.254218	-0.056420
15655501 H(61A) 15755501 4.466918	5000	0	0.000000	1.452745	0.221091	-0.209937
15755501 H(61B) 15855501 4.466918	5000	0	0.000000	1.529236	0.319075	-0.177754
15855501 H(61C) 15955501 4.466918	5000	0	0.000000	1.489932	0.308588	-0.241252
15955501 H(62A) 16055501 4.975580	5000	0	0.000000	1.290376	0.330569	-0.265892
16055501 H(62B) 16155501 4.975580	5000	0	0.000000	1.207547	0.359402	-0.217489
16155501 H(62C) 16255501 4.975580	5000	0	0.000000	1.254720	0.245194	-0.232904
16255501 H(63A) 16355501 5.842206 16355501	5000	0	0.000000	1.425715	0.473742	-0.224548

H(63B) 16455501 5.842206	5000	0	0.000000	1.450495	0.502372	-0.158803
16455501 H(63C) 16555501 5.842206	5000	0	0.000000	1.330124	0.511880	-0.184166
16555501 H(65A) 16655501 7.168176	5000	0	0.000000	1.116018	0.495292	-0.000030
16655501 H(65B) 16755501 7.168176	5000	0	0.000000	1.149354	0.574024	0.058282
16755501 H(65C) 16855501 7.168176	5000	0	0.000000	1.179813	0.454195	0.047887
16855501 H(66A) 16955501 6.444342	5000	0	0.000000	1.340345	0.632170	0.084053
H(66B) 17055501 6.444342	5000	0	0.000000	1.433728	0.596809	0.041855
H(66C) 17155501 6.444342	5000	0	0.000000	1.381089	0.515471	0.073102
H(67A) 17255501 6.834413	5000	0	0.000000	1.205119	0.613545	-0.048295
H (67B) 17355501 6.834413	5000	0	0.000000	1.330591	0.650526	-0.034067
H(67C) 17455501 6.834413 17455501	5000	0	0.000000	1.241242	0.693330	0.009307
H(69A) 17555501 4.185990	5000	0	0.000000	1.329372	0.017496	-0.020709
H(69B) 17655501 4.185990	5000	0	0.000000	1.271570	0.052972	-0.072066
H(69C) 17755501 4.185990 17755501	5000	0	0.000000	1.238614	0.103115	-0.010340

H(70A) 17855501 4.153425	5000	0	0.000000	1.518168	0.064564	-0.039341
17855501 H(70B) 17955501 4.153425	5000	0	0.000000	1.545231	0.173829	-0.054537
17955501 H(70C) 18055501 4.153425	5000	0	0.000000	1.469408	0.086207	-0.096337
18055501 H(71A) 18155501 4.893833	5000	0	0.000000	1.358540	0.220554	0.054882
18155501 H(71B) 18255501 4.893833	5000	0	0.000000	1.475425	0.258526	0.039398
18255501 H(71C) 18355501 4.893833	5000	0	0.000000	1.455897	0.141748	0.046371
18355501 H(73A) 18455501 4 166816	5000	0	0.000000	0.877837	0.194256	-0.169238
4.166816 18455501 H(73B) 18555501	5000	0	0.000000	0.864597	0.246889	-0.105184
4.166816 18555501 H(73C) 18655501	5000	0	0.000000	0.876513	0.123481	-0.124900
4.166816 18655501 H(74A) 18755501	5000	0	0.000000	1.034899	0.134336	-0.056691
4.312580 18755501 H(74B) 18855501	5000	0	0.000000	1.020219	0.257300	-0.036749
4.312580 18855501 H(74C) 18955501	5000	0	0.000000	1.135487	0.214542	-0.056574
4.312580 18955501 H(75A) 19055501	5000	0	0.000000	1.138334	0.320137	-0.128395
3.991631 19055501 H(75B) 19155501 3.991631	5000	0	0.000000	1.026499	0.368195	-0.106396
19155501						

H(75C) 19255501 3.991631	5000	0	0.000000	1.034540	0.313985	-0.170668
19255501 H(76A) 19355501 13.694830	5000	0	0.000000	1.536866	-0.120317	-0.438149
19355501 H(76B) 19455501 13.694830	5000	0	0.000000	1.592489	-0.154877	-0.496105
19455501 H(76C) 19555501 13.694830	5000	0	0.000000	1.658994	-0.158847	-0.439679
19555501 H(77A) 19655501 10.987609	5000	0	0.000000	1.601692	-0.324822	-0.480868
19655501 H(77B) 19755501 10.987609	5000	0	0.000000	1.480844	-0.290317	-0.491541
19755501 H(78A) 19855501 7.786448	5000	0	0.000000	1.578882	-0.299515	-0.387386
19855501 H(86) 19955501 7.786448	5000	0	0.000000	1.463003	-0.251310	-0.393913
19955501 H(79A) 20055501 8.818871	5000	0	0.000000	1.508488	-0.461918	-0.436343
20055501 H(79B) 20155501 8.818871	5000	0	0.000000	1.392501	-0.413729	-0.443088
20155501 H(80A) 20255501 15.387534	5000	0	0.000000	1.492839	-0.440761	-0.341817
20255501 H(80B) 20355501 15.387534	5000	0	0.000000	1.382371	-0.498554	-0.372194
20355501 H(80C) 20455501 15.387534	5000	0	0.000000	1.385075	-0.376456	-0.343571
20455501 H(81A) 20555501 20.595890 20555501	5000	0	0.000000	1.895135	0.411095	-0.225688

H(81B) 20655501 20.595890	5000	0	0.000000	1.793501	0.347667	-0.262436
20655501 H(81C) 20755501 20.595890	5000	0	0.000000	1.778504	0.409504	-0.199927
20755501 H(82A) 20855501 18.947748	5000	0	0.000000	1.769394	0.471412	-0.291021
20855501 H(82B) 20955501 18.947748	5000	0	0.000000	1.858361	0.539095	-0.247249
H (83A) 21055501 14.595962 21055501	5000	0	0.000000	1.643707	0.504521	-0.231247
H(83B) 21155501 14.595962 21155501	5000	0	0.000000	1.730083	0.562855	-0.184049
H (84A) 21255501 16.085403 21255501	5000	0	0.000000	1.653939	0.636646	-0.270727
H (84B) 21355501 16.085403 21355501	5000	0	0.000000	1.739448	0.695359	-0.222493
H (85A) 21455501 15.324339 21455501	5000	0	0.000000	1.518615	0.655562	-0.214756
H (85B) 21555501 15.324339 21555501	5000	0	0.000000	1.584747	0.765939	-0.201237
H(85C) 21655501 15.324339 21655501	5000	0	0.000000	1.599777	0.688574	-0.160657
100 0.2697 0.0000E+00	0000					

Figure 1: VERSORT Drawing(s)

Figure 2: ORTEP Drawing(s)

Figure 3: Space Filling Model Drawing(s)

Crystallographic data for complex (Nacnac)Ti=N[P(CH₂[±]Bu)(Mes*)](N=CPh₂) (3)

The sample was submitted by the research group of Prof. Daniel J. Mindiola, Department of Chemistry, Indiana University. Inert atmosphere techniques were used to place a dark red crystal of approximate dimensions $0.25 \times 0.25 \times 0.25$ mm onto the tip of a 0.15 mm diameter glass fiber which was subsequently mounted on a SMART6000 (Bruker) and cooled to 115(2) K.

Data collection

A preliminary set of cell constants was calculated from reflections obtained from three nearly orthogonal sets of 20 frames. The data collection was carried out using graphite monochromated Mo K α radiation with a frame time of 15 seconds and a detector distance of 5.0 cm. A randomly oriented region of a sphere in reciprocal space was surveyed. Two sections of 606 frames were collected with 0.30° steps in ω at different ϕ settings with the detector set at -43° in 20. Final cell constants were calculated from the xyz centroids of 727 strong reflections from the actual data collection after integration (SAINT).¹

Structure solution and refinement

Intensity statistics and systematic absences suggested the centrosymmetric space group P1bar and subsequent solution and refinement confirmed this choice. The structure was solved using SHELXS-97 and refined with SHELXL-97.² A direct-methods solution was calculated which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed which located the remaining non-hydrogen atoms. There is some disorder present in the molecule. The major discrepancy appears to be a "flip" of the phosphorous with an approximate ratio of 84:16. This leads to disorder in several other parts of the molecule. In addition, there is a rotational disorder about C(8)-C(16) so that the two methyl groups of the iPr ligand having alternate positions. All non-hydrogen atoms were refined with anisotropic displacement parameters.

All hydrogen atoms were located in subsequent Fourier maps and included as isotropic contributors in the final cycles of refinement. Several of those associated with the disorder tended to drift to unreasonable positions and were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters.

The final full matrix least squares refinement converged to R1 = 0.0646 and wR2 = 0.1530 (F², all data). The remaining electron density is located on bonds.

SAINT 6.1, Bruker Analytical X-Ray Systems, Madison, WI. SHELXTL-Plus V5.10, Bruker Analytical X-Ray Systems, Madison, WI.

Table 1

Program MU for data file labeled

MSC03117

The foll	owing wer	e used			
At.No.	At.Wt.	Abs.	olo	No.	Element
22	47.880	23.400	4.75	1	Ti
15	30.974	7.970	3.07	1	P
7	14.007	.845	5.56	4	N
6	12.011	.576	77.50	65	С
1	1.008	.373	9.11	91	Н

The density is 1.125 g/cc.

The volume is 2974.12 cubic Angstroms

Z = 2 and the molecular wt. is 1007.32

F(000) = 1092

The linear absorption coefficient = 2.120 reciprocal centimeters,

and 1/4Mu = 1.1792 mm.

Crystal Data for MSC Sample 03117

Empirical Formula

C65H91N4PTi

Color of Crystal:	deep red
Crystal Dimensions were:	0.25 x 0.25 x 0.25 mm.
Space Group:	P-1
Cell Dimensions (at 115(2) K; 7 a = b = c = alpha = beta = gamma =	27 reflections) 11.696(2) 13.078(4) 20.218(4) 81.562(6) 78.932(5) 80.736(5)
Z (Molecules/cell):	2
Volume:	2974.1(11)
Calculated Density:	1.125
Wavelength:	0.71073
Molecular Weight:	1007.29
F(000):	1092
Linear Absorption Coefficient:	0.212

Data were collected on a Bruker SMART 6000 sealed-tube system comprising a three-circle platform goniostat, an HOG crystal monochromator, a four kilopixel by four kilopixel single-chip CCD-based detector, a K761 high voltage generator, and a PC interface running Bruker's SMART software.

Detector	to sample distance =	5.0	cm.
Take off	angle =	6.0	deg.

Data collected by the omega scan technique according to the following parameters:

frame width = 0.3	deg.
time per frame = 15.0	sec.

Data processing statistics for 27.5 degrees maximum theta:

Total r N N	number Number Number	of intension of unique with $F > 4$	ities inte intensiti Asigma(F)	grated es = =	=	12447 11628 6497
F	R for a	veraging	=			0.053

Refinement results:

Final residuals are:	
R(F) (observed data) =	0.0624
Rw(F2) (refinement data) =	0.1530
Final Goodness of Fit =	0.915
Maximum delta/sigma for the last cycle =	2.50

Table 3: Fractional Coordinates and Isotropic Thermal Parameters for MSC Sample 03117

Atom	х	У	Z	Uiso
Ti(1)	3117(1)	1967(1)	7078(1)	18(1)
N(2)	2906(2)	581(2)	7666(1)	19(1)
C(3)	3784(3)	-123(3)	7410(2)	22(1)
C(4)	4880(3)	128(3)	7052(2)	23(1)
C(5)	5420(3)	1032(3)	7019(2)	22(1)
N(6)	4819(2)	1927(2)	7205(1)	18(1)
C(7)	1949(3)	204(3)	8153(2)	22(1)
C(8)	864(3)	189(3)	7956(2)	28(1)
C(9)	-18(3)	-219(3)	8438(2)	36(1)
C(10)	152(3)	-594(3)	9094(2)	35(1)
C(11)	1208(3)	-539(3)	9282(2)	29(1)
C(12)	2124(3)	-141(3)	8821(2)	23(1)
C(13)	3254(3)	-85(3)	9068(2)	26(1)
C(14)	3047(4)	620(4)	9624(2)	40(1)
C(15)	3831(4)	-1158(4)	9329(3)	51(1)
C(16)	616(3)	586(3)	7248(2)	35(1)
C(17)	-451(5)	1520(5)	7280(3)	29(1)
C(18)	345(6)	-246(5)	6897(3)	45(2)
C(19)	3637(4)	-1257(3)	7510(2)	40(1)
C(20)	6722(3)	943(4)	6748(2)	32(1)
C(21)	5438(3)	2772(3)	7274(2)	21(1)
C(22)	5792(3)	3478(3)	6706(2)	23(1)
C(23)	6420(3)	4256(3)	6795(2)	33(1)
C(24)	6686(3)	4334(3)	7423(2)	40(1)
C(25)	6295(3)	3654(3)	7972(2)	36(1)
C(26)	5671(3)	2864(3)	7917(2)	26(1)
C(27)	5253(3)	2124(3)	8536(2)	30(1)
C(28)	4966(5)	2647(4)	9191(2)	44(1)
C(29)	6142(4)	1153(4)	8613(2)	44(1)
C(30)	5477(3)	3448(3)	6016(2)	24(1)
C(31)	4435(3)	4265(3)	5903(2)	31(1)
C(32)	6513(4)	3581(4)	5434(2)	34(1)
N(33)	3046(2)	1955(2)	6140(1)	22(1)
C(34)	3074(3)	1872(3)	5521(2)	23(1)
C(35)	4166(3)	1955(3)	5003(2)	24(1)
C(36)	4158(3)	2670(3)	4424(2)	30(1)
C(37)	5179(4)	2777(3)	3962(2)	38(1)
C(38)	6216(4)	2152(3)	4063(2)	42(1)
C(39)	6230(4)	1421(3)	4625(2)	38(1)

C(40)	5215(3)	1335(3)	5100(2)	29(1)
C(41)	2011(3)	1698(3)	5255(2)	24(1)
C(42)	2119(3)	1165(3)	4693(2)	30(1)
C(12)	1107(4)	1100(0)	1000(2)	20(1)
C(43)	1127(4)	995(5)	4470(2)	39(1)
C(44)	32(4)	1373(3)	4784(2)	40(1)
C(45)	-89(3)	1912(3)	5338(2)	37(1)
C(46)	899(3)	2066(3)	5577(2)	28(1)
N(47)	2277(2)	3043(2)	7414(1)	23(1)
D(10)	1045(1)	1222(1)	7507(1)	20(1)
P(40)	1045(1)	4322(1)	7307(1)	20(1)
C(49)	2416(3)	4497(3)	8277(2)	38(I)
C(50)	2683(3)	5597(3)	8307(2)	33(1)
C(51)	3160(5)	5568(4)	8966(3)	54(1)
C(52)	3613(5)	5908(4)	7710(3)	56(1)
C(53)	1579(4)	6386(4)	8326(3)	45(1)
C(54)	221(3)	4624(3)	7798(2)	26(1)
C(55)	-438(3)	4449(3)	8464(2)	25(1)
C(55)	-1276(2)	5200(2)	0101(2)	25(1)
C(50)	-1370(3)	5200(3)	0073(2)	2J(1)
C(57)	-1/29(3)	6082(3)	8261(2)	∠/(⊥)
C(58)	-1208(3)	6147(3)	7580(2)	28(1)
C(59)	-273(3)	5423(3)	7331(2)	25(1)
C(60)	-297(3)	3459(3)	8989(2)	32(1)
C(61)	652(3)	2586(3)	8747(2)	41(1)
C(62)	-43(4)	3706(4)	9664(2)	45(1)
C (63)	-1456(3)	3020(3)	9131(2)	10(1)
C(03)	1400(0)	5020(5)	DIJI(2)	ユノ(エ) つれ(1)
C (64)	-2699(3)	6929(3)	8541(2)	34(1)
C(65)	-22/6(4)	/4⊥⊥(4)	90/3(3)	63(I)
C(66)	-3793(4)	6417(4)	8888(3)	72(2)
C(67)	-3039(5)	7779(4)	8002(2)	77(2)
C(68)	140(3)	5549(3)	6545(2)	35(1)
C(69)	1067(4)	6296(4)	6318(2)	42(1)
C(70)	526(5)	4499(4)	6276(2)	52(1)
C(71)	-912(4)	6043(5)	6178(2)	51(1)
C(17N)	-517(12)	025(12)	7204(7)	55(2)
C(1/A)	-JI/(IZ)	923(12)	7204(7)	55(3)
C(18A)	1180(14)	-333(13)	6/36(8)	68(4)
P(48A)	1720(6)	3805(6)	8013(3)	43(2)
H(86)	-114	128	758	43
H(85)	-64	174	682	43
H(84)	-23	211	745	43
H(87)	96	-85	692	68
H(89)	30	2	642	68
LI (88)	_ 1 1	-16	712	68
п(00)	-41	-40	712	00
H(138)	56	194	906	61
H(13/)	143	278	8/4	61
Н(136)	58	247	829	61
H(142)	-165	289	870	71
H(143)	-208	352	935	71
H(144)	-139	237	944	71
H(145)	-159	775	886	95
н(1/7)	_207	686	Q / 2	95 Q5
11 (1 4 <i>/)</i>	207	702	007	9 J J
п(146)	-290	193	921	95
н(149)	-440	694	909	TO /
H(148)	-358	586	924	107
H(150)	-410	612	855	107
H(151)	-361	832	821	115
H(152)	-338	749	768	115
Н(153)	-234	809	776	115

н(72)	539(2)	-43(2)	688(1)	9(7)
ц(72)	-72(2)	-10(2)	000(1)	20(10)
п(73)	- / 3 (3)	-19(3)	031(2)	30(10)
H(/4)	-44(3)	-88(3)	937(2)	33(10)
H(/5)	138(2)	- /9 (2)	973(2)	⊥⊥ (/) 1 0 (0)
H(76)	379(3)	15(2)	873(2)	19(8)
Н(77)	269(3)	130(3)	944(2)	41(12)
H(78)	253(3)	34(3)	1002(2)	38(11)
H(79)	377(4)	62(3)	976(2)	50(12)
H(80)	455(3)	-109(3)	944(2)	34(10)
H(81)	332(4)	-145(4)	970(3)	76(17)
H(82)	399(4)	-164(3)	896(2)	58(13)
H(83)	127(3)	91(3)	703(2)	26(9)
H(90)	361(5)	-159(4)	803(3)	100(18)
н(91)	292(4)	-132(4)	738(2)	73(16)
н(92)	420(3)	-168(3)	723(2)	41 (11)
H(93)	709(4)	27(4)	678(2)	54(14)
H(94)	681 (3)	116(3)	633(2)	35(11)
H(95)	710(3)	139(3)	697(2)	43(11)
H(96)	660 (3)	470 (3)	643(2)	21 (9)
H(97)	712(3)	489(3)	747(2)	48(12)
H(98)	641 (3)	377(3)	838(2)	47(12)
н(99)	454(3)	193(2)	847(1)	7(7)
H(100)	462 (4)	223(3)	955(2)	52(13)
H(101)	402 (4)	223(3)	922(3)	96(19)
H(102)	570(1)	200(2)	020(2)	50(1) 60(1)
H(102)	570(4)	200 (J) 125 (2)	920(2)	25(0)
H(103)	592(3)	155(3)	898(2)	23(9) 18(12)
H(104)	592(5)	76(2)	090(2)	40(12)
H(105)	020(J) 521(2)	272(2)	600(2)	29(10)
H(100)	JJI(3)	273(3)	500(2) E40(2)	25(9)
H(107)	417(3)	417(3)	549(2)	23(9)
H(100)	3/0(3)	410(3)	629(Z) 507(2)	40(II) 21(10)
H(109)	461(3)	495(3)	567(2)	SI(10)
H(IIU)	6/6(4)	425(4)	543(Z) 400(2)	38(13) 40(11)
H(III)	629(3)	350(3)	499(2)	40(11)
H(112)	/16(4)	307(3)	550(2)	54(14)
H(113)	342(3)	312(2)	433(2)	16(8)
$H(\perp \perp 4)$	515(3)	323(3)	360(2)	3/(11)
H(115)	687(3)	220(3)	380(2)	43(12)
H(116)	689(3)	102(3)	470(2)	19(9)
H(117)	519(3)	83(2)	549(2)	17(8)
H(118)	296(4)	89(3)	442(2)	52(12)
H(119)	121(3)	56(3)	409(2)	41(11)
Н(120)	-67(3)	129(3)	465(2)	40(11)
Н(121)	-82(3)	220(2)	555(2)	12(8)
Н(122)	79(3)	247(3)	594(2)	22(9)
H(123)	184(3)	429(3)	878(2)	35(10)
H(124)	330(4)	400(4)	821(2)	71(14)
H(125)	260(4)	526(4)	941(2)	80(16)
H(126)	335(5)	637(5)	903(3)	130(20)
H(127)	392(4)	498(4)	897(2)	80(16)
H(128)	439(5)	533(5)	771(3)	110(20)
H(129)	312(5)	614(4)	724(3)	107(19)
H(130)	379(3)	651(3)	791(2)	48(12)
H(131)	128(4)	646(3)	788(2)	62(14)
H(132)	96(4)	617(4)	863(2)	78(17)
Н(133)	170(3)	708(3)	846(2)	20(8)
H(134)	-175(3)	513(3)	912(2)	38(11)

Н(135)	-151(3)	671(3)	727(2)	22(9)
Н(139)	74(4)	409(3)	963(2)	58(13)
H(140)	-79(4)	432(4)	989(2)	84(16)
H(141)	2(3)	299(3)	1000(2)	44(11)
Н(154)	125(3)	642(3)	581(2)	50(12)
Н(155)	75(4)	702(4)	652(2)	63(14)
Н(156)	179(4)	599(3)	653(2)	60(13)
Н(157)	131(2)	432(2)	644(1)	0(7)
Н(158)	76(4)	462(3)	573(2)	57(12)
Н(159)	-31(4)	406(4)	644(2)	89(17)
Н(160)	-65(4)	596(3)	565(2)	67(14)
Н(161)	-155(4)	565(4)	635(2)	66(14)
Н(162)	-118(4)	685(4)	627(2)	70(15)

Notes:

 Fractional coordinates are X 10**4 for non-hydrogen atoms and X 10**3 for hydrogen atoms. Uiso values are all X 10**3.
 Isotropic values for those atoms refined anisotropically are calculated as one third of the trace of the orthogonalized Uij tensor.

3) Parameters without standard deviations were not varied.

Table	4:	Anis	otropic Therma	l Parameter	s for MSC	Sample 03117	
Atom		U11	U22	U33	U23	U13	U12
Ti(1)		15(1)	21(1)	16(1)	-1(1)	-3(1)	-2(1)
N(2)		20(1)	22(2)	16(1)	-1(1)	-3(1)	-4(1)
C(3)		25(2)	23(2)	19(2)	0(1)	-6(1)	-3(2)
C(4)		23(2)	20(2)	22(2)	-2(2)	-2(1)	7(2)
C(5)		19(2)	27(2)	18(2)	0(2)	-4(1)	0(2)
N(6)		17(1)	22(2)	15(1)	1(1)	-4(1)	-2(1)
C(7)		22(2)	20(2)	21(2)	-1(1)	2(1)	-5(2)
C(8)		23(2)	35(2)	25(2)	-4(2)	-1(1)	-8(2)
C(9)		27(2)	49(3)	36(2)	-3(2)	-4(2)	-17(2)
C(10)		31(2)	37(2)	32(2)	3(2)	6(2)	-14(2)
C(11)		33(2)	29(2)	20(2)	2(2)	2(2)	-6(2)
C(12)		24(2)	18(2)	24(2)	-3(1)	0(1)	-1(2)
C(13)		25(2)	33(2)	16(2)	5(2)	-3(1)	0(2)
C(14)		36(2)	52(3)	37(2)	-9(2)	-14(2)	-2(2)
C(15)		40(3)	53(3)	60(3)	-8(3)	-19(2)	8(3)
C(16)		29(2)	54(3)	27(2)	2(2)	-8(2)	-17(2)
C(19)		51(3)	27(2)	38(2)	-13(2)	10(2)	-9(2)
C(20)		20(2)	40(3)	34(2)	-4(2)	-2(2)	1(2)
C(21)		15(2)	27(2)	22(2)	-2(1)	-5(1)	-2(2)
C(22)		19(2)	27(2)	24(2)	-1(2)	-4(1)	-5(2)
C(23)		36(2)	34(2)	30(2)	3(2)	-5(2)	-16(2)
C(24)		41(2)	47(3)	38(2)	-8(2)	-10(2)	-23(2)
C(25)		40(2)	47(3)	28(2)	-6(2)	-15(2)	-15(2)
C(26)		25(2)	30(2)	26(2)	-4(2)	-9(1)	-7(2)
C(27)		32(2)	35(2)	26(2)	3(2)	-13(2)	-9(2)
C(28)		58(3)	54(3)	25(2)	-3(2)	-9(2)	-17(3)
C(29)		51(3)	50(3)	34(2)	1(2)	-13(2)	-14(2)
C(30)		27(2)	23(2)	22(2)	2(2)	-2(1)	-8(2)
C(31)		33(2)	32(2)	27(2)	-2(2)	-5(2)	-5(2)
C(32)		31(2)	44(3)	26(2)	-4(2)	2(2)	-8(2)

N(33)	23(1)	22(2)	20(1)	0(1)	-5(1)	0(1)
C(34)	27(2)	18(2)	21(2)	0(1)	-6(1)	0(2)
C(35)	28(2)	26(2)	18(2)	-4(1)	0(1)	-8(2)
C(36)	38(2)	30(2)	21(2)	-1(2)	-4(2)	-5(2)
C(37)	54(3)	36(3)	22(2)	-6(2)	3(2)	-14(2)
C(38)	40(2)	52(3)	35(2)	-16(2)	12(2)	-22(2)
C(39)	31(2)	42(3)	41(2)	-15(2)	0(2)	-1(2)
C(40)	34(2)	26(2)	27(2)	-4(2)	-6(2)	-3(2)
C(41)	29(2)	23(2)	20(2)	2(1)	-7(1)	-5(2)
C(42)	35(2)	29(2)	28(2)	-3(2)	-10(2)	-4(2)
C(43)	49(2)	38(3)	36(2)	-9(2)	-18(2)	-11(2)
C(44)	40(2)	41(3)	44(2)	7(2)	-26(2)	-14(2)
C(45)	25(2)	43(3)	40(2)	2(2)	-7(2)	-1(2)
C(46)	27(2)	29(2)	27(2)	0(2)	-8(2)	-2(2)
N(47)	20(1)	26(2)	22(1)	-4(1)	-2(1)	0(1)
P(48)	18(1)	18(1)	20(1)	2(1)	2(1)	-1(1)
C(49)	33(2)	39(3)	44(2)	-11(2)	-6(2)	-7(2)
C(50)	35(2)	33(2)	34(2)	-6(2)	-3(2)	-12(2)
C(51)	51(3)	61(3)	52(3)	-9(3)	-8(2)	-11(3)
C(52)	51(3)	52(3)	61(3)	0(3)	4(3)	-19(3)
C(53)	41(2)	36(3)	61(3)	-17(2)	-6(2)	-7(2)
C(54)	24(2)	24(2)	31(2)	-10(2)	1(2)	-3(2)
C(55)	23(2)	22(2)	30(2)	-4(2)	-10(1)	1(2)
C(56)	22(2)	26(2)	25(2)	-3(2)	-4(2)	0(2)
C(57)	21(2)	26(2)	37(2)	-11(2)	-5(2)	-2(2)
C(58)	28(2)	22(2)	34(2)	-1(2)	-10(2)	-4(2)
C(59)	23(2)	23(2)	29(2)	3(2)	-2(2)	-8(2)
C(60)	31(2)	31(2)	29(2)	1(2)	-5(2)	3(2)
C(61)	42(2)	37(2)	36(2)	6(2)	-1(2)	-3(2)
C(62)	51(3)	60(3)	25(2)	3(2)	-9(2)	-12(3)
C(63)	43(2)	36(3)	61(3)	14(2)	-14(2)	-11(2)
C(64)	26(2)	28(2)	45(2)	-10(2)	-6(2)	8(2)
C(65)	55(3)	53(3)	88(4)	-41(3)	-19(3)	14(2)
C(66)	34(2)	58(3)	114(4)	-26(3)	8(3)	9(2)
C(67)	85(4)	67(4)	62(3)	-13(3)	-12(3)	41(3)
C(68)	39(2)	34(2)	28(2)	2(2)	2(2)	-5(2)
C(69)	38(2)	43(3)	41(2)	10(2)	-5(2)	-7(2)
C(70)	63(3)	60(3)	33(2)	-8(2)	-7(2)	-7(3)
C(71)	45(3)	73(4)	34(2)	-2(2)	-4(2)	-16(3)
P(48A)	41(4)	43(4)	42 (4)	-2(3)	-1(3)	-5(3)
Form of the anisotropic thermal parameter.						

Form of the anisotropic thermal parameter: exp{ -2 pi**2 [h**2 (a*)**2 U11 + ... + 2 h k (a*) (b*) U12] } All values are X 10**3

Table 5a: Bond Distances for MSC Sample 03117

A	В	Distance
Ψi (1)	N(47)	1 727 (3)
Ti(1)	N(33)	1.918(3)
Ti(1)	N(2)	2.039(3)
Ti(1)	N(6)	2.048(3)
N(2)	C(3)	1.343(4)
N(2)	C(7)	1.441(4)
C(3)	C(4)	1.409(4)

C(3)	C(19)	1500(5)
C(4)	C (E)	1 415(5)
	C(5)	1.415(5)
C(4)	H(/Z)	0.93(3)
C(5)	N(6)	1.330(4)
C(5)	C(20)	1.508(5)
N(6)	C(21)	1.450(4)
C(7)	C(12)	1 403(4)
C(7)	C(12)	1 405 (4)
		1.403(4)
C(8)	C(9)	1.391(5)
C(8)	C(16)	1.516(5)
C(9)	C(10)	1.385(5)
C(9)	H(73)	0.91(3)
C(10)	C(11)	1.374(5)
C(10)	H(74)	0 90 (3)
C(11)	C(12)	1 303(4)
C(11)	C(1Z)	1.393(4)
	H(/S)	0.97(3)
C(12)	C(13)	1.515(5)
C(13)	C(14)	1.518(5)
C(13)	C(15)	1.522(6)
C(13)	Н(76)	0.90(3)
C(14)	н(77)	0.97(4)
C(11)	ц(70)	0.07(1)
C(14)	п(70)	0.97(4)
C(14)	Н(/9)	0.94(4)
C(15)	H(80)	0.94(4)
C(15)	H(81)	0.94(5)
C(15)	H(82)	1.01(5)
C(16)	C(18)	1.488(7)
C(16)	C(17)	1598(7)
C(16)	u (83)	0.03(3)
C(10)	п (05)	0.93(3)
C(17)	H(86)	0.9800
C(17)	H(85)	0.9800
C(17)	H(84)	0.9800
C(18)	H(87)	0.9800
C(18)	H(89)	0.9800
C(18)	H(88)	0.9800
C(19)	н(90)	1 07(6)
C(19)	ц (Q1)	0.95(5)
C(10)	II () I)	0.00(0)
C(19)	H (92)	0.94(4)
C(20)	H(93)	0.91(4)
C(20)	Н(94)	0.85(4)
C(20)	Н(95)	0.98(4)
C(21)	C(22)	1.404(4)
C(21)	C(26)	1,405(4)
C(22)	C(23)	1 396(5)
C(22)	C(20)	1,500(5)
C(2Z)	C(30)	1.010(4)
C(23)	C(24)	1.38/(5)
C(23)	Н(96)	0.88(3)
C(24)	C(25)	1.371(5)
C(24)	Н(97)	0.98(4)
C(25)	C(26)	1.385(5)
C(25)	н (98)	0 89(4)
C(26)	C (27)	1 510/51
C(20)	C(27)	1 F1F(0)
C(27)	C(29)	1.515(6)
C(27)	C(28)	1.535(5)
C(27)	Н(99)	0.94(3)
C(28)	H(100)	0.91(4)
C(28)	H(101)	1.08(6)
C(28)	H(102)	1.06(4)
--------------------------------	-------------------------	----------------------
C(29)	н(103)	0.98(3)
C(29)	H(104)	0.95(4)
C(29)	H(105)	0.96(4)
C(20)	C(31)	1 514(5)
C(30)	C(31)	1,514(5) 1,520(5)
C(30)	C(32)	1.550(5)
C(30)	H(106)	0.99(3)
C(31)	H(107)	0.97(3)
C(31)	Н(108)	1.00(4)
C(31)	H(109)	0.92(4)
C(32)	H(110)	0.96(5)
C(32)	H(111)	1.01(4)
C(32)	H(112)	0.94(4)
N(33)	C(34)	1.264(4)
C(34)	C (35)	1,496(4)
C (34)	C(41)	1.509(4)
C(35)	C(36)	1 388(5)
C (35)	C(40)	1,388(5)
C (36)	C(37)	1,370(5)
C(30)	U(37)	1.379(3)
C(30)	H(113)	0.99(3)
C(37)	C(38)	1.382(6)
C(3/)	$H(\perp \perp 4)$	0.88(4)
C(38)	C(39)	1.373(6)
C(38)	Н(115)	0.85(4)
C(39)	C(40)	1.385(5)
C(39)	H(116)	0.89(3)
C(40)	H(117)	0.95(3)
C(41)	C(46)	1.383(5)
C(41)	C(42)	1.393(5)
C(42)	C(43)	1.383(5)
C(42)	H(118)	1.07(4)
C(43)	C(44)	1.367(6)
C(43)	Н(119)	1.00(4)
C(44)	C(45)	1.382(6)
C(44)	н(120)	0 94 (4)
C(45)	C(46)	1 389(5)
C(45)	н(121)	0.93(3)
C(45)	u(122)	0.93(3)
C(40) N(47)	$\Pi(122)$ $\Pi(42)$	1 605(2)
$\mathbb{N}(47)$	P(40)	1.095(3)
P(48)	C(49)	1.865(4)
P(48)	C(54)	1.872(3)
C(49)	C(50)	1.532(5)
C(49)	H(123)	1.12(3)
C(49)	Н(124)	1.12(5)
C(50)	C(53)	1.516(6)
C(50)	C(52)	1.516(5)
C(50)	C(51)	1.532(6)
C(51)	H(125)	1.08(5)
C(51)	H(126)	1.14(7)
C(51)	H(127)	1.08(5)
C(52)	H(128)	1.08(6)
C(52)	Н(129)	1.18(6)
C(52)	Н(130)	1.00(4)
C (53)	H(131)	1.02(5)
C (53)	H(132)	0.91(5)
C (53)	н(133)	1 02(3)
C(54)	C(55)	1 425(4)
\smile $(\bigcirc$ \perp)	\cup $(\cup \cup)$	

~ (5 4)	~ (= 0)	1 400 (5)
C(54)	C(59)	1.429(5)
C(55)	C(56)	1.395(5)
C (55)	CIGO	1557(5)
C (33)	C(00)	1.007(0)
C(56)	C(5/)	1.3/(5)
C(56)	H(134)	0.92(4)
C(57)	C (58)	1 392 (5)
C(J7)	C (30)	1.552(5)
C(57)	C(64)	1.538(5)
C(58)	C(59)	1.393(5)
C(58)	H(135)	0 97 (3)
C (EQ)	n(190)	1 ECO(E)
C(59)	C(00)	1.362(3)
C(60)	C(63)	1.517(5)
C(60)	C(61)	1.523(5)
CIED	C (62)	1 5/1(5)
C(00)	C(02)	1.041(0)
C(61)	H(138)	0.9800
C(61)	H(137)	0.9800
C(61)	H(136)	0.9800
0(62)	11 (120)	1 10(4)
C(02)	н(139)	1.10(4)
C(62)	H(140)	1.17(5)
C(62)	H(141)	1.08(4)
C (63)	н(142)	0 9800
C(00)	II (142)	0.0000
C (63)	H(143)	0.9800
C(63)	Н(144)	0.9800
C(64)	C(67)	1.500(6)
C(64)	C(65)	1 517(6)
C (C 1)	C (C C)	1 = 41 (6)
C(64)		1.041(0)
C(65)	H(145)	0.9800
C(65)	H(147)	0.9800
C(65)	H(146)	0.9800
C(66)	ц(1/Q)	0 9800
C(00)	n (149)	0.9800
C(66)	H(148)	0.9800
C(66)	Н(150)	0.9800
C(67)	H(151)	0.9800
C(67)	н (152)	0 9800
C (67)	11 (152)	0.0000
C(07)	н(155)	0.9000
C(68)	C(70)	1.519(6)
C(68)	C(69)	1.536(5)
C(68)	C(71)	1.562(6)
C (60)	U(154)	1 01(4)
	n(154)	1.01(4)
C(69)	H(155)	1.0/(5)
C(69)	Н(156)	1.02(4)
C(70)	H(157)	1.01(3)
C(70)	н (158)	1 08(4)
(70)	II (1EO)	$\pm \cdot 00(\pi)$
	п(139)	1.10(3)
C(71)	н(160)	1.07(5)
C(71)	H(161)	0.95(5)
C(71)	H(162)	1.09(5)
D(187)	u(123)	1 78 (1)
r (40A)	п(таз)	1. / 0 (4)

Symmetry transformations used to generate equivalent atoms:

Table 5b: Bond Angles for MSC Sample 03117

A	В	С	Angle
N(47)	Ti(1)	N(33)	112.97(12)

N(47)	Ti(1)	N(2)	114.50(11)
N(33)	Ti(1)	N(2)	114.30(11)
N(47)	(-) Ti(1)	N(6)	108 72(12)
N(33)	T + (1)	N(6)	110 46(10)
N(33)	TT (T) TT (T)	N(6)	9/ 18(10)
$\Gamma(2)$	$I \perp (I)$ N (2)	$\left(0 \right)$	110 1 (2)
C(3)	N(Z)	C(7)	110.1(3)
C(3)	N(Z)	T1(1)	106.4(2)
C(7)	N(2)	Ti(1)	133.9(2)
N(2)	C(3)	C(4)	123.9(3)
N(2)	C(3)	C(19)	120.0(3)
C(4)	C(3)	C(19)	116.1(3)
C(3)	C(4)	C(5)	130.3(3)
C(3)	C(4)	Н(72)	115.0(18)
C(5)	C(4)	Н(72)	113.4(18)
N(6)	C(5)	C(4)	122.4(3)
N(6)	C(5)	C(20)	120.8(3)
C(4)	C(5)	C(20)	116.7(3)
C(5)	N(6)	C(21)	120.1(3)
C(5)	N(6)	Ti(1)	107.8(2)
C(21)	N(6)	Ti(1)	129.7(2)
C(12)	C(7)	C(8)	121.1(3)
C(12)	C(7)	N(2)	118.8(3)
C(8)	C(7)	N(2)	120.1(3)
C(9)	C(8)	C(7)	117 9(3)
C (9)	C (8)	C(16)	1189(3)
C(7)	C(8)	C(16)	123 2(3)
C(10)	C(9)	C(20)	123.2(3) 121.7(3)
C(10)	C(9)	U(73)	121(2)
C(10)	C(9)	п(73)	121(2) 117(2)
C(0)	C(9)	$\Pi(73)$	110(2)
C(11)	C(10)	C(9)	119.4(3)
C(11)	C(10)	H(74)	123(2)
C(9)	C(10)	H(/4)	117(2)
C(10)	C(11)	C(1Z)	121.5(3)
C(10)	C(11)	H(/5)	123.1(17)
C(12)	C(11)	H(/5)	115.4(1/)
C(11)	C(12)	C (/)	118.3(3)
C (11)	C(12)	C(13)	118.5(3)
C (7)	C(12)	C(13)	123.1(3)
C(12)	C(13)	C(14)	111.5(3)
C(12)	C(13)	C(15)	112.0(3)
C(14)	C(13)	C(15)	108.9(3)
C(12)	C(13)	Н(76)	111(2)
C(14)	C(13)	Н(76)	109(2)
C(15)	C(13)	Н(76)	105(2)
C(13)	C(14)	Н(77)	107(2)
C(13)	C(14)	H(78)	110(2)
H(77)	C(14)	Н(78)	110(3)
C(13)	C(14)	Н(79)	108(3)
Н(77)	C(14)	Н(79)	115(3)
Н(78)	C(14)	Н(79)	106(3)
C(13)	C(15)	H(80)	109(2)
C(13)	C(15)	H(81)	110(3)
H(80)	C(15)	H(81)	112(4)
C(13)	C(15)	Н(82)	110(2)
H(80)	C(15)	Н(82)	108(3)
H(81)	C(15)	Н(82)	108(4)
C(18)	C(16)	C(8)	112.6(4)

C(18)	C(16)	C(17)	1095(4)
C(10)	C(16)	C(17)	110 0(2)
C(0)	C(10)	C(17)	115(0)
C(18)	C(16)	H(83)	115(2)
C(8)	C(16)	H(83)	105(2)
C(17)	C(16)	H(83)	104(2)
C(16)	C(17)	H(86)	109.5
C(16)	C(17)	H(85)	109.5
Н(86)	C(17)	H(85)	109.5
C(16)	C(17)	H(84)	109.5
H(86)	C(17)	H(84)	109.5
H(85)	C(17)	H(84)	109.5
C(16)	C(18)	H(87)	109 5
C(16)	C(18)	H(89)	109 5
С(10) Н(87)	C(18)	н (89)	109.5
C(16)	C(10)	и (00)	100.5
C(10)	C(10)	п(00)	109.5
H(0/)	C(10)	H(00)	109.5
H(89)	C(18)	H(88)	109.5
C(3)	C(19)	H(90)	112(3)
C(3)	C(19)	H(91)	108(3)
Н(90)	C(19)	H(91)	109(4)
C(3)	C(19)	Н(92)	115(2)
Н(90)	C(19)	Н(92)	109(4)
H(91)	C(19)	H(92)	103(4)
C(5)	C(20)	H(93)	113(3)
C(5)	C(20)	H(94)	108(3)
н (93)	C(20)	H(94)	106(4)
C(5)	C(20)	н (95)	111(2)
ц (93)	C(20)	н (95)	112(3)
п (93)	C(20)	н (95)	112(3)
H(94)	C(20)	H(95)	100(3)
C(22)	C(21)	C(26)	121.2(3)
C (22)	C(21)	N (6)	120.3(3)
C(26)	C(21)	N(6)	118.6(3)
C(23)	C(22)	C(21)	118.0(3)
C(23)	C(22)	C(30)	119.5(3)
C(21)	C(22)	C(30)	122.5(3)
C(24)	C(23)	C(22)	121.3(3)
C(24)	C(23)	H(96)	123(2)
C(22)	C(23)	H(96)	115(2)
C(25)	C(24)	C(23)	119.3(4)
C(25)	C(24)	H(97)	121(2)
C(23)	C(24)	H(97)	119(2)
C(24)	C(25)	C(26)	122.1(4)
C(24)	C(25)	H(98)	117(3)
C(26)	C(25)	H(98)	120(3)
C(25)	C(26)	C(21)	118.0(3)
C(25)	C (26)	C(27)	120.0(3) 120.7(3)
C(21)	C (26)	C(27)	120.7(3) 121.3(3)
C(21)	C(20)	C(27)	121.3(3) 111.2(2)
C(29)	C(27)	C(20)	111.2(3)
C(29)	C(27)	C(20)	110.2(3)
C(26)	C(27)	C(28)	112.5(3)
C (29)	C(27)	н(99)	109.5(18)
C(26)	C(27)	Н(99)	107.1(17)
C(28)	C(27)	Н(99)	106.1(17)
C(27)	C(28)	H(100)	112(3)
C(27)	C(28)	H(101)	121(3)
H(100)	C(28)	H(101)	102(4)
C(27)	C(28)	H(102)	106(2)

н(100)	C(28)	н(102)	110(3)
11(100)	C (20)	II(102)	105(3)
H(IUI)	C(28)	H(102)	105(4)
C(27)	C(29)	H(103)	110(2)
C(27)	C(29)	Н(104)	115(3)
H(103)	C(29)	H(104)	108(3)
C(27)	C(29)	H(105)	113(2)
u(103)	C(29)	u(105)	109(3)
11(100)	C(20)	II (105)	100(3)
H(104)	C(29)	H(105)	101(3)
C(31)	C(30)	C(22)	110.3(3)
C(31)	C(30)	C(32)	110.7(3)
C(22)	C(30)	C(32)	112.8(3)
C(31)	C(30)	Н(106)	112.0(19)
C(22)	C(30)	н(106)	107 5(19)
C (32)	C (30)	ц(106)	1035(18)
C (32)	C(30)	H(100)	110(0)
C(30)	C(31)	H(107)	110(2)
C(30)	C(31)	H(108)	111(2)
H(107)	C(31)	H(108)	107(3)
C(30)	C(31)	H(109)	112(2)
H(107)	C(31)	H(109)	109(3)
н(108)	C(31)	н(109)	108(3)
C (20)	C(31)	$\Pi(100)$	100(3)
C (30)	C(32)	H(110)	109(3)
C(30)	C(32)	$H(\bot \bot \bot)$	110(2)
H(110)	C(32)	H(111)	112(3)
C(30)	C(32)	H(112)	111(2)
H(110)	C(32)	H(112)	107(4)
H(111)	C(32)	н(112)	107(3)
C (34)	N(33)	(, Ͳi(1)	174 5(3)
U(22)	C (24)		1, 1, 0 (3)
N (33)	C(34)	C(33)	122.1(3)
N(33)	C(34)	C(41)	122.4(3)
C(35)	C(34)	C(41)	115.5(3)
C(36)	C(35)	C(40)	118.6(3)
C(36)	C(35)	C(34)	120.8(3)
C(40)	C(35)	C(34)	120.6(3)
C(37)	C (36)	C(35)	120.6(4)
C(37)	C(36)	U(112)	120.0(4)
C(37)	C(36)	H(113)	110.4(17)
C (35)	C(36)	H(113)	121.0(1/)
C(36)	C(37)	C(38)	120.2(4)
C(36)	C(37)	H(114)	119(3)
C(38)	C(37)	H(114)	121(3)
C(39)	C(38)	C(37)	119.9(4)
C (39)	C (38)	н (115)	117(3)
C(37)	C (38)	н(115)	124(3)
C(37)	C(30)	$\Gamma(110)$	124(3)
C(30)	C(39)	C(40)	120.0(4)
C(38)	C(39)	H(116)	$\perp \angle \perp (\angle)$
C(40)	C(39)	Н(116)	119(2)
C(39)	C(40)	C(35)	120.7(3)
C(39)	C(40)	H(117)	121.9(19)
C(35)	C(40)	H(117)	117.3(19)
C(46)	C(41)	C(42)	1189(3)
C(16)	C(11)	C(24)	110.5(3)
	$\bigcirc (\exists \perp)$	C(34)	101
\cup (42)	(4⊥)	C (34)	121.6(3)
C(43)	C(42)	C(41)	120.4(4)
C(43)	C(42)	H(118)	118(2)
C(41)	C(42)	H(118)	122(2)
C(44)	C(43)	C(42)	120.4(4)
C(44)	C(43)	н(119)	120(2)
C(12)	C(13)	() ц(119)	120(2)
C(42)	0(40)	11 (1 1 2)	⊥∠∪ (∠ <i>)</i>

C(13)	C(AA)	C(45)	119 9(1)
C(43)		C(40)	104(0)
C(43)	C (44)	H(120)	124(2)
C(45)	C(44)	H(120)	116(2)
C(44)	C(45)	C(46)	120.2(4)
C(44)	C(45)	Н(121)	121.1(19)
C(46)	C(45)	н (121)	1186(19)
C(10)	C(10)	C(4E)	120.2(4)
C(41)	C(40)	C(4J)	120.2(4)
C(41)	C(46)	H(IZZ)	$\perp \angle \perp (\angle)$
C(45)	C(46)	Н(122)	118(2)
P(48)	N(47)	Ti(1)	157.41(17)
N(47)	P(48)	C(49)	103.94(16)
N(47)	P(48)	C(54)	112.59(14)
C(49)	P(48)	C(54)	$101 \ 11 \ (17)$
C(50)	C(10)	D(10)	115 5(2)
C (30)	C(49)	F(40)	115.5(5)
C(50)	C(49)	H(123)	105.3(18)
P(48)	C(49)	H(123)	115.3(18)
C(50)	C(49)	H(124)	105(2)
P(48)	C(49)	H(124)	102(2)
Н(123)	C(49)	Н(124)	114(3)
C(53)	C(50)	C(52)	1106(4)
C (53)	C(50)	C(52)	100.0(4)
C (55)	C(50)	C (51)	100.4(4)
C(52)	C(50)	C(51)	108.9(4)
C(53)	C(50)	C(49)	111.2(3)
C(52)	C(50)	C(49)	110.5(4)
C(51)	C(50)	C(49)	107.2(4)
C(50)	C(51)	Н(125)	114(3)
C(50)	C(51)	н(126)	112(3)
U(125)	C(51)	H(126)	112(3)
H(125)	C(51)	H(120)	110(4)
C (50)	C(51)	H(127)	109(3)
Н(125)	C(51)	Н(127)	99(3)
Н(126)	C(51)	Н(127)	112(4)
C(50)	C(52)	H(128)	109(3)
C(50)	C(52)	Н(129)	106(3)
н(128)	C(52)	н(129)	123(4)
C(50)	C(52)	ц(130)	95(2)
U(100)	C (JZ)	$\Pi(130)$	95 (Z) 10C (A)
H(120)	C(52)	H(130)	106(4)
H(129)	C (52)	H(130)	115(4)
C(50)	C(53)	Н(131)	110(3)
C(50)	C(53)	Н(132)	113(3)
H(131)	C(53)	Н(132)	102(4)
C(50)	C(53)	H(133)	111.7(18)
H(131)	C (53)	Н(133)	113(3)
н(132)	C(53)	н (133)	107(4)
C(55)	C(53)	C(50)	1177(2)
C (33)	C(54)	C(39)	117.7(3)
C (55)	C(54)	P(48)	128.7(3)
C(59)	C(54)	P(48)	110.0(2)
C(56)	C(55)	C(54)	118.4(3)
C(56)	C(55)	C(60)	114.1(3)
C(54)	C(55)	C(60)	127.4(3)
C(57)	C (56)	C (55)	123.3(3)
C(57)	C(56)	ц (137)	117/21
		11 (104) 11 (104)	エエノ (乙) 110 (Q)
C(33)		п(134)	119(2)
C(56)	C(57)	C(58)	117.1(3)
C(56)	C(57)	C(64)	120.9(3)
C(58)	C(57)	C(64)	122.0(3)
C(57)	C(58)	C(59)	122.3(3)
C(57)	C(58)	н(135)	118.7(19)
	. ,	/	

G (F O)	Q (F Q)	TT (1 0 E)	110 0(10)
C(59)	C(58)	H(135)	118.9(19)
C(58)	C(59)	C(54)	119.0(3)
C(58)	C(59)	C(68)	116.0(3)
C(54)	C(50)	C(69)	125 0(2)
C(34)	C (39)	C (00)	123.0(3)
C(63)	C(60)	C(61)	106.7(3)
C(63)	C(60)	C(62)	108.3(3)
C(61)	C(60)	C(62)	107.1(3)
C(63)	C(60)	C(55)	1067(3)
C (03)	C(00)	0(55)	100.7(3)
C(61)	C(60)	C (55)	115.1(3)
C(62)	C(60)	C(55)	112.5(3)
C(60)	C(61)	H(138)	109.5
C(60)	C(61)	н (137)	109 5
U(120)	C(G1)	(107)	100.5
н(130)		H(137)	109.5
C(60)	C(61)	H(136)	109.5
H(138)	C(61)	Н(136)	109.5
H(137)	C(61)	н(136)	109.5
C(60)	C(62)	н (139)	116(2)
C(00)	C (62)	II(10)	110(2)
C(60)	C (62)	H(140)	110(2)
H(139)	C(62)	H(140)	102(3)
C(60)	C(62)	H(141)	108(2)
H(139)	C(62)	H(141)	111(3)
н (140)	C(62)	ц(1/1)	111(3)
n(140)	C(02)	$\Pi(141)$	100 5
C(60)	C (63)	H(14Z)	109.5
C(60)	C(63)	H(143)	109.5
H(142)	C(63)	H(143)	109.5
C(60)	C(63)	H(144)	109.5
ч (142)	C(63)	н (1 / /)	109 5
II (142)	C (03)	11 (144)	100.5
H(143)	C(63)	H(144)	109.5
C(67)	C(64)	C(65)	108.8(4)
C(67)	C(64)	C(57)	113.0(3)
C(65)	C(64)	C(57)	109.1(3)
C(67)	C(61)	C (66)	109.0(4)
			100.0(4)
C(65)	C(64)	C (66)	108.0(4)
C(57)	C(64)	C(66)	108.9(3)
C(64)	C(65)	H(145)	109.5
C(64)	C(65)	H(147)	109.5
н(145)	C (65)	н (147)	109 5
	C (05)	II(14C)	100.5
C(64)	C (65)	H(146)	109.5
H(145)	C(65)	H(146)	109.5
H(147)	C(65)	H(146)	109.5
C(64)	C(66)	H(149)	109.5
C(64)	C(66)	H(148)	109 5
U(140)	C (66)	(140)	100 5
п(149)	C(00)	п(140)	109.5
C(64)	C(66)	H(150)	109.5
Н(149)	C(66)	Н(150)	109.5
H(148)	C(66)	H(150)	109.5
C(64)	C(67)	H(151)	109.5
C(61)	C(67)	u (152)	100 5
C(04)	C(07)	H(152)	109.5
H(ISI)	C(67)	H(152)	109.5
C(64)	C(67)	Н(153)	109.5
Н(151)	C(67)	H(153)	109.5
H(152)	C(67)	H(153)	109.5
C(70)	CLERY	C (69)	112 9/11
C(70)	0 (00)	C(0)	100 (1)
			105.0(4)
C(69)	C(68)	C(71)	105.5(3)
C(70)	C(68)	C(59)	111.8(3)
C(69)	C(68)	C(59)	112.2(3)

C(71)	C(68)	C(59)	110.3(3)
C(68)	C(69)	H(154)	110(2)
C(68)	C(69)	H(155)	110(2)
Н(154)	C(69)	H(155)	110(3)
C(68)	C(69)	H(156)	109(2)
Н(154)	C(69)	Н(156)	112(3)
Н(155)	C(69)	H(156)	106(3)
C(68)	C(70)	H(157)	98.4(16)
C(68)	C(70)	H(158)	109(2)
Н(157)	C(70)	H(158)	104(3)
C(68)	C(70)	H(159)	105(2)
Н(157)	C(70)	H(159)	128(3)
Н(158)	C(70)	H(159)	111(3)
C(68)	C(71)	H(160)	108(2)
C(68)	C(71)	H(161)	108(3)
Н(160)	C(71)	H(161)	107(4)
C(68)	C(71)	H(162)	110(2)
Н(160)	C(71)	H(162)	113(3)
Н(161)	C(71)	H(162)	110(4)

Symmetry transformations used to generate equivalent atoms:

Table 5c: Torsion angles for MSC Sample 03117

A - B - C - D

Torsion Angle

Ti(1)	N(2)	C(3)	-167.1(2)
Ti(1)	N(2)	C(3)	60.3(2)
Ti(1)	N(2)	C(3)	-54.3(2)
Ti(1)	N(2)	C(7)	28.5(3)
Ti(1)	N(2)	C(7)	-104.0(3)
Ti(1)	N(2)	C(7)	141.3(3)
N(2)	C(3)	C(4)	-165.6(3)
N(2)	C(3)	C(4)	27.1(4)
N(2)	C(3)	C(19)	13.1(5)
N(2)	C(3)	C(19)	-154.2(3)
C(3)	C(4)	C(5)	17.2(6)
C(3)	C(4)	C(5)	-161.5(4)
C(4)	C(5)	N(6)	-17.4(6)
C(4)	C(5)	C(20)	163.7(3)
C(5)	N(6)	C(21)	169.3(3)
C(5)	N(6)	C(21)	-11.8(5)
C(5)	N(6)	Ti(1)	-26.8(4)
C(5)	N(6)	Ti(1)	152.0(3)
Ti(1)	N(6)	C(5)	172.7(2)
Ti(1)	N(6)	C(5)	-62.9(2)
Ti(1)	N(6)	C(5)	55.0(2)
Ti(1)	N(6)	C(21)	-25.6(3)
Ti(1)	N(6)	C(21)	98.9(3)
Ti(1)	N(6)	C(21)	-143.2(2)
N(2)	C(7)	C(12)	76.4(4)
	Ti(1) Ti(1) Ti(1) Ti(1) Ti(1) N(2) N(2) N(2) N(2) N(2) C(3) C(3) C(3) C(3) C(4) C(4) C(4) C(5) C(5) C(5) C(5) C(5) Ti(1) Ti(1) Ti(1) Ti(1) Ti(1) N(2)	$\begin{array}{cccc} \text{Ti}(1) & \text{N}(2) \\ \text{N}(2) & \text{C}(3) \\ \text{N}(2) & \text{C}(3) \\ \text{N}(2) & \text{C}(3) \\ \text{C}(3) & \text{C}(4) \\ \text{C}(3) & \text{C}(4) \\ \text{C}(3) & \text{C}(4) \\ \text{C}(4) & \text{C}(5) \\ \text{C}(4) & \text{C}(5) \\ \text{C}(5) & \text{N}(6) \\ \text{C}(5) & \text{N}(6) \\ \text{C}(5) & \text{N}(6) \\ \text{C}(5) & \text{N}(6) \\ \text{Ti}(1) & \text{N}(6) \\ \end{tabular}$	$\begin{array}{cccccc} {\rm Ti}(1) & {\rm N}(2) & {\rm C}(3) \\ {\rm Ti}(1) & {\rm N}(2) & {\rm C}(3) \\ {\rm Ti}(1) & {\rm N}(2) & {\rm C}(7) \\ {\rm Ti}(1) & {\rm N}(2) & {\rm C}(7) \\ {\rm Ti}(1) & {\rm N}(2) & {\rm C}(7) \\ {\rm Ti}(1) & {\rm N}(2) & {\rm C}(3) & {\rm C}(4) \\ {\rm N}(2) & {\rm C}(3) & {\rm C}(4) \\ {\rm N}(2) & {\rm C}(3) & {\rm C}(19) \\ {\rm N}(2) & {\rm C}(3) & {\rm C}(19) \\ {\rm N}(2) & {\rm C}(3) & {\rm C}(19) \\ {\rm N}(2) & {\rm C}(3) & {\rm C}(19) \\ {\rm C}(3) & {\rm C}(4) & {\rm C}(5) \\ {\rm C}(3) & {\rm C}(4) & {\rm C}(5) \\ {\rm C}(4) & {\rm C}(5) & {\rm N}(6) \\ {\rm C}(4) & {\rm C}(5) & {\rm N}(6) \\ {\rm C}(4) & {\rm C}(5) & {\rm N}(6) \\ {\rm C}(21) \\ {\rm C}(5) & {\rm N}(6) & {\rm C}(21) \\ {\rm C}(5) & {\rm N}(6) & {\rm C}(5) \\ {\rm Ti}(1) & {\rm N}(6) & {\rm C}(5) \\ {\rm Ti}(1) & {\rm N}(6) & {\rm C}(5) \\ {\rm Ti}(1) & {\rm N}(6) & {\rm C}(21) \\ {\rm Ti}(1) & {\rm C}(5) & {\rm C}(12) \\ {\rm C}(5) & {\rm C}(7) & {\rm C}(12) \\ \end{array} \right)$

Ti(1)	N(2)	C(7)	C(12)	-120.7(3)
C(3)	N(2)	C(7)	C(8)	-103.9(4)
Ti(1)	N(2)	C(7)	C(8)	59.1(4)
C(12)	C(7)	C(8)	C(9)	-2.6(5)
N(2)	C(7)	C(8)	C(9)	177.6(3)
C(12)	C(7)	C(8)	C(16)	177.8(3)
N(2)	C(7)	C(8)	C(16)	-1.9(5)
C(7)	C(8)	C(9)	C(10)	0.5(6)
C(16)	C(8)	C(9)	C(10)	-179.9(4)
C(8)	C(9)	C(10)	C(11)	1.6(6)
C(9)	C(10)	C(11)	C(12)	-1.7(6)
C(10)	C(11)	C(12)	C(7)	-0.3(5)
C(10)	C(11)	C(12)	C(13)	178.8(4)
C(8)	C(7)	C(12)	C(11)	2.5(5)
N(2)	C(7)	C(12)	C(11)	-177.7(3)
C(8)	C(7)	C(12)	C(13)	-176.6(3)
N(2)	C(7)	C(12)	C(13)	3.2(5)
C(11)	C(12)	C(13)	C(14)	-61.6(4)
C(7)	C(12)	C(13)	C(14)	117.5(4)
C(11)	C(12)	C(13)	C(15)	60.7(4)
C(7)	C(12)	C(13)	C(15)	-120.2(4)
C(9)	C(8)	C(16)	C(18)	-61.8(5)
C(7)	C(8)	C(16)	C(18)	117.8(4)
C(9)	C(8)	C(16)	C(17)	60.7(5)
C(7)	C(8)	C(16)	C(17)	-119.7(4)
C(5)	N(6)	C(21)	C(22)	85.8(4)
Ti(1)	N(6)	C(21)	C(22)	-74.0(4)
C(5)	N(6)	C(21)	C(26)	-94.2(4)
с(с) ті(1)	N(6)	C(21)	C(26)	106.0(3)
C(26)	C(21)	C(22)	C(23)	2 1 (5)
N(6)	C(21)	C(22)	C(23)	-177.9(3)
C(26)	C(21)	C(22)	C(30)	-175.4(3)
N(6)	C(21)	C(22)	C(30)	4.5(5)
C(21)	C(22)	C(23)	C(24)	-0.1(6)
C(30)	C(22)	C(23)	C(24)	177.5(4)
C(22)	C(23)	C(24)	C(25)	-2.0(6)
C(23)	C(24)	C(25)	C(26)	2.2(6)
C(24)	C(25)	C(26)	C(21)	-0.2(6)
C(24)	C(25)	C(26)	C(27)	179.9(4)
C(22)	C(21)	C(26)	C(25)	-2.0(5)
N(6)	C(21)	C(26)	C(25)	178.0(3)
C(22)	C(21)	C(26)	C(27)	177.9(3)
N(6)	C(21)	C(26)	C(27)	-2.1(5)
C(25)	C(26)	C(27)	C(29)	-92.6(4)
C(21)	C(26)	C(27)	C(29)	87.5(4)
C(25)	C(26)	C(27)	C(28)	31.6(5)
C(21)	C(26)	C(27)	C(28)	-148.3(4)
C(23)	C(22)	C(30)	C(31)	-78.0(4)
C(21)	C(22)	C(30)	C(31)	99.5(4)
C(23)	C(22)	C(30)	C(32)	46.2(5)
C(21)	C(22)	C(30)	C(32)	-136.2(4)
N(47)	Ti(1)	N(33)	C(34)	173(3)
N(2)	Ti(1)	N(33)	C(34)	-54(3)
N(6)	(-, Ti(1)	N(33)	C(34)	51(3)
Ti(1)	N(33)	C(34)	C(35)	-60(3)
Ti(1)	N(33)	C(34)	C(41)	121(3)
N(33)	C(34)	C(35)	C(36)	-125.0(4)

C(41)	C(34)	C(35)	C(36)	54.2(4)
N(33)	C(34)	C(35)	C(40)	53.3(5)
C(41)	C(34)	C(35)	C(40)	-127.4(3)
C(40)	C(35)	C(36)	C(37)	-1.4(5)
C(34)	C(35)	C(36)	C(37)	177.0(3)
C(35)	C(36)	C(37)	C(38)	1.7(6)
C(36)	C(37)	C(38)	C(39)	0.0(6)
C(37)	C(38)	C(39)	C(40)	-2.1(6)
C(38)	C(39)	C(40)	C(35)	2.4(6)
C(36)	C(35)	C(40)	C(39)	-0.7(5)
C(34)	C(35)	C(40)	C(39)	-179.1(3)
N(33)	C(34)	C(41)	C(46)	28.4(5)
C(35)	C(34)	C(41)	C(46)	-150.8(3)
N(33)	C(34)	C(41)	C(42)	-150.9(3)
C(35)	C(34)	C(41)	C(42)	29.9(4)
C(46)	C(41)	C(42)	C(43)	-1.0(5)
C(34)	C(41)	C(42)	C(43)	178.3(3)
C(41)	C(42)	C(43)	C(44)	2.1(6)
C(42)	C(43)	C(44)	C(45)	-1.5(6)
C(43)	C(44)	C(45)	C(46)	-0.2(6)
C(42)	C(41)	C(46)	C(45)	-0.7(5)
C(34)	C(41)	C(46)	C(45)	-180.0(3)
C(44)	C(45)	C(46)	C(41)	1.3(6)
N(33)	Ti(1)	N(47)	P(48)	-62.9(5)
N(2)	Ti(1)	N(47)	P(48)	163.9(4)
N(6)	Ti(1)	N(47)	P(48)	60.0(5)
Ti(1)	N(47)	P(48)	C(49)	-102.5(5)
Ti(1)	N(47)	P(48)	C(54)	148.9(4)
N(47)	P(48)	C(49)	C(50)	152.5(3)
C(54)	P(48)	C(49)	C(50)	-90.7(3)
P(48)	C(49)	C(50)	C(53)	62.7(4)
P(48)	C(49)	C(50)	C(52)	-60.5(4)
P(48)	C(49)	C(50)	C(51)	-178.9(3)
N(47)	P(48)	C(54)	C(55)	78.7(3)
C(49)	P(48)	C(54)	C(55)	-31.7(3)
N(47)	P(48)	C(54)	C(59)	-123.9(2)
C(49)	P(48)	C(54)	C(59)	125.8(3)
C(59)	C(54)	C(55)	C(56)	-14.4(5)
P(48)	C(54)	C(55)	C(56)	141.6(3)
C(59)	C(54)	C(55)	C(60)	160.8(3)
P(48)	C(54)	C(55)	C(60)	-43.1(5)
C(54)	C(55)	C(56)	C(57)	2.8(5)
C(60)	C(55)	C(56)	C(57)	-173.1(3)
C(55)	C(56)	C(57)	C(58)	8.2(5)
C(55)	C(56)	C(57)	C(64)	-174.6(3)
C(56)	C(57)	C(58)	C(59)	-7.4(5)
C(64)	C(57)	C(58)	C(59)	175.4(3)
C(57)	C(58)	C(59)	C(54)	-4.3(5)
C(57)	C(58)	C(59)	C(68)	174.9(3)
C(55)	C(54)	C(59)	C(58)	15.2(5)
P(48)	C(54)	C(59)	C(58)	-145.1(3)
C(55)	C(54)	C(59)	C(68)	-163.9(3)
P(48)	C(54)	C(59)	C(68)	35.9(4)
C(56)	C(55)	C(60)	C(63)	56.7(4)
C(54)	C(55)	C(60)	C(63)	-118.7(4)
C(56)	C(55)	C(60)	C(61)	174.9(3)
C(54)	C(55)	C(60)	C(61)	-0.6(5)

C(56)	C(55)	C(60)	C(62)	-62.0(4)
C(54)	C(55)	C(60)	C(62)	122.6(4)
C(56)	C(57)	C(64)	C(67)	-174.7(4)
C(58)	C(57)	C(64)	C(67)	2.4(5)
C(56)	C(57)	C(64)	C(65)	64.2(5)
C(58)	C(57)	C(64)	C(65)	-118.7(4)
C(56)	C(57)	C(64)	C(66)	-53.5(5)
C(58)	C(57)	C(64)	C(66)	123.7(4)
C(58)	C(59)	C(68)	C(70)	-144.1(4)
C(54)	C(59)	C(68)	C(70)	34.9(5)
C(58)	C(59)	C(68)	C(69)	87.8(4)
C(54)	C(59)	C(68)	C(69)	-93.1(4)
C(58)	C(59)	C(68)	C(71)	-29.5(5)
C(54)	C(59)	C(68)	C(71)	149.6(4)

Symmetry transformations used to generate equivalent atoms:

Figure 1: VERSORT Drawing(s)

Figure 3: Space Filling Model Drawing(s)

