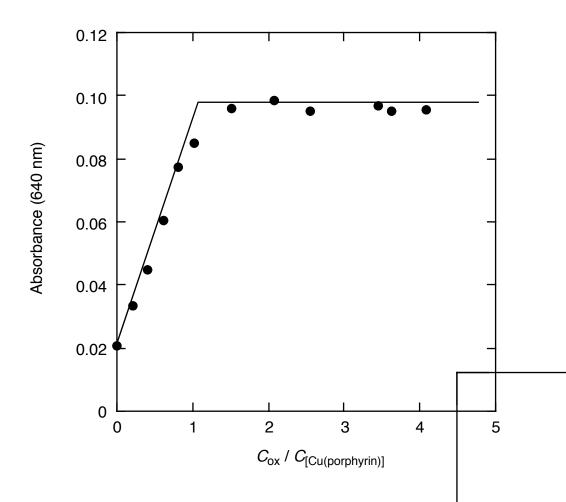

Supplementary Information

Electron Transfer Reactions between Copper(II) Porphyrin Complexes and Various Oxidizing Reagents in Acetonitrile


Masahiko Inamo,* Hideto Kumagai, Ushio Harada, Sumitaka Itoh, Satoshi Iwatsuki, Koji Ishihara, and Hideo D. Takagi

Contribution from the Department of Chemistry, Aichi University of Education, Kariya 448-8542, Japan, Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Chemistry, Waseda University, Tokyo 169-8555, Japan.

*To whom correspondence should be addressed. E-mail: minamo@auecc.aichi-edu.ac.jp

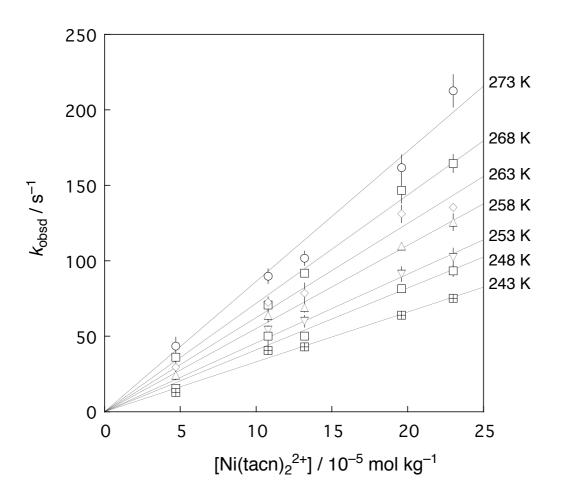


Figure S1. UV-visible absorption spectra of [Cu(OEP)] (**A**) and the product of the reaction with Cu(II) triflate (**B**) in acetonitrile at T = 25.0 °C. $C_{\text{Cu-OEP}} = 1.26$ x 10⁻⁶ M. The absorbance caused by the excess amount of the Cu(II) ion was subtracted from the original spectrum for the latter case.

I

Figure S2. Dependence of the absorbance on the ratio of the total concentrations of Cu(II) ion (C_{ox}) and [Cu(OEP)] ($C_{[Cu(porphyrin)]}$) for the reaction of [Cu(OEP)] and Cu(II) triflate at T = 25.0 °C. Total concentration of the porphyrin complex is 3.23 x 10⁻⁵ M. The mixture of acetonitrile and dichloromethane (1:1 v/v) was used as a solvent instead of pure acetonitrile for the sake of higher solubility of the porphyrin complex.

Figure S3. Dependence of the pseudo-first-order rate constant k_{obsd} of the reaction of $[Fe(phen)_3]^{3+}$ with $[Ni(tacn)_2]^{2+}$ on the concentration of the Ni(II) complex in acetonitrile. The concentration of the Fe(III) complex is (4.43 ~ 15.8) x 10⁻⁶ mol kg⁻¹. I = 0.1 mol kg⁻¹ (TBAP).

<i>T /</i> K ^b	k_{12} / 10 ⁵ mol ⁻¹ kg s ⁻¹
243	3.30 ± 0.04
248	4.09 ± 0.17
253	4.58 ± 0.07
258	5.53 ± 0.06
263	6.25 ± 0.10
268	7.13 ± 0.09
273	8.72 ± 0.15
298	16 °

Table S1. Second-order rate constant k_{12} for the oxidation reaction of $[Ni(tacn)_2]^{2+}$ by $[Fe(phen)_3]^{3+}$ in acetonitrile solution.^a

^a [Fe(phen)₃³⁺] = (4.43 ~ 15.8) x 10⁻⁶ mol kg⁻¹, [Ni(tacn)₂²⁺] = (4.7 ~ 23.0) x 10⁻⁵ mol kg⁻¹. I = 0.1 mol kg⁻¹ (tetra-*n*-butylammonium perchlrorate), [CF₃SO₃H] = 1 mmol kg⁻¹. ^b The temperature of all samples was held constant within ± 1 K. ^c Rate constant at T = 298 K was calculated using the kinetic parameters ($\Delta H^{\ddagger} = 15.0 \pm 0.8$ kJ mol⁻¹, $\Delta S^{\ddagger} = -75.9 \pm 2.8$ J mol⁻¹ K⁻¹) determined from the rate constants in the temperature range from 243 K to 273 K. The value of $k_{12}(298$ K) in the molarity unit is 2.0 x 10⁶ M⁻¹ s⁻¹.

Table S2. Electron Transfer Properties of the Complexes Used in the Present Study: Equilibrium Constant of the Electron Transfer Reaction (*K*), Radii of the Complexes (a_1 , a_2), So-called Work Terms in the Marcus Theory (w_{11} , w_{22} , w_{12} , w_{21} , and W_{12}), Rate Constant for the Self-Exchange Reaction (k_{11} or k_{22}), and the Factor *f*.

Oxidant	$[Fe(o-phen)_3]^{3+}$	Cu ²⁺	Cu ²⁺	Cu ²⁺	Cu ²⁺
Reductant	$[Ni(tacn)_2]^{2+}$	$[Ni(tacn)_2]^{2+}$	$[Ru(hfac)_3]^-$	[Cu(TPP)]	[Cu(OEP)]
Κ	9.9 x 10	4.9 x 10	9.7 x 10 ⁴	33	1600
a_1 / pm	680	340	340	340	340
<i>a</i> ₂ / pm	380	380	500	1800	1500
w_{11} / kJ mol ⁻¹	5.5	5.5	5.5	5.5	5.5
w_{22} / kJ mol ⁻¹	13.9	13.9	0	0	0
$w_{12} / \text{kJ} \text{mol}^{-1}$	8.2	10.1	-4.0	0	0
w_{21} / kJ mol ⁻¹	8.2	7.5	0	0.4	0.5
W_{12}	1.80	1.43	6.72	2.78	2.71
k_{12} / \mathbf{M}^{-1} s ⁻¹	2.0 x 10 ⁶	3.50	1.60×10^4	5.80×10^3	1.98 x 10 ⁵
k_{11} / \mathbf{M}^{-1} s ⁻¹	1.4×10^7	$1.2 \times 10^{-4 a}$	$1.5 \times 10^{-5 a}$	4.2 x 10 ^{-5 b}	$4.2 \times 10^{-5 \text{ b}}$
k_{22} / \mathbf{M}^{-1} s ⁻¹	$1.2 \times 10^{3 a}$	1.2×10^3	7.0 x 10 ⁶	3.4 x 10 ^{9 a}	$1.2 \times 10^{11 a}$
f	0.7613	0.8744	0.5727	0.9268	0.6774

^a Value determined from eq 7. ^b The averaged value of $1.2 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$ and $1.5 \times 10^{-5} \text{ M}^{-1} \text{ s}^{-1}$.