Well-defined indium(III) *N*-heterocyclic carbene complexes with triflate ligands: Structural models for the In(OTf)₃ catalyst

Jamie H. Cotgreave, David Colclough, Gabriele Kociok-Köhn, Christopher G. Frost and Andrew S. Weller

Supporting Information

Experimental data for the new complexes 1 to 4 DFT calculations on 1

(IMes)InMe₂Cl, (1): A Schlenk was charged with InMe₃ (387mg, 2.42mmol) and iMes-Cl (750mg, 2.20mmol). Toluene (20ml) was added by cannula at ambient temperature and the reaction was stirred for 3hrs. NMR spectroscopy (¹H) demonstrated that the reaction was essentially quantitative (> 95%). The solvent volume was reduced to half volume and stored at 277K overnight to yield a batch of clear and colourless crystals (885mg, 83%); *NMR* (CD₂Cl₂): ¹H (400MHz): 7.19 (2H, s, olefin), 7.05 (4H, s, aromatic), 2.37 (6H, s, CH₃), 2.12 (12H, s, CH₃), -1.03 (6H, s, In-CH₃). ¹³C{¹H}(75.5MHz): 177.5, 140.5, 136.0, 134.9, 129.8, 124.3, 21.4, 18.0, -8.1. Elemental analysis: calcd (%) for C₂₃H₃₀ClInN₂: C 56.99, H 6.24, N 5.78; found C, 57.20; H, 6.21; N, 5.66.

(IMes)InMe₂OTf, (2): A Young's tube was charged with 1 (50mg, 0.11mmol) and CH₂Cl₂ (5ml) added via cannula. TMSOTf (20 µl, 0.11mmol) was added via syringe at ambient temperature. The reaction mixture was stirred for 5 minutes. The solvent was removed in vacuo to yield a white solid. The compound was recrystallised from CH₂Cl₂ and hexane and stored at 253K overnight to yield a batch of clear and colourless crystals (41mg, 58%). *NMR* (CD₂Cl₂) $\delta^{d}H$ (400MHz): 7.29 (2H, s, olefin), 7.09 (4H, s, aromatic), 2.39 (6H, s, CH₃), 2.09 (12H, s, CH₃), -0.80 (6H, s, In-CH₃); $\delta^{l3}C\{^{1}H\}$ (75.5MHz): 176.2, 141.0, 135.7, 134.4, 130.0, 124.9, 120.1 (319Hz, q, CF₃), 21.4, 17.6, -7.1; $\delta^{l9}F$ (376.5MHz): -78.7. Elemental analysis: calcd (%) for C₂₄H₃₀F₃InN₂O₃S with one molecule CH₂Cl₂: C 43.94, H 4.72, N 4.10; found C, 45.60 H, 4.95 N, 4.33

(IMes)InMe(OTf)₂ (3): A Young's tube was charged with 1 (50mg, 0.10mmol) and CH₂Cl₂ (5ml) was added via cannula. TMS-OTf (19µl, 0.10mmol) was added via syringe at ambient temperature and the reaction mixture was stirred for 5 minutes. HOTf (9µl, 0.10mmol) was then added via syringe. Gas evolution was observed and the reaction mixture was stirred for a further 5mins. Solvent was removed in vacuo to yield a white solid. The compound was recrystallised from CH₂Cl₂ and hexane and stored at 253K overnight to yield a batch of clear and colourless crystals (45mg, 60%). *NMR* (CD₂Cl₂): δ^{4} H (400MHz): 7.39 (2H, s, olefin), 7.10 (4H, s, aromatic), 2.39 (6H, s, CH₃), 2.13 (12H, s, CH₃), -0.41 (3H, s, In-CH₃); δ^{43} C{¹H} (75.5MHz): $\delta = 168.7$, 142.1, 135.6, 132.8, 130.4, 126.3, 119.3 (318Hz, q, CF₃), 21.4, 17.7, -5.0; δ^{49} F (376.5MHz) $\delta = -77.8$; microanalytical data, calculated: C, 39.36; H, 3.72; N, 3.82; experimental: C, 39.20; H, 4.04; N, 3.79

Cartesian Coordinates for 1 optimised at the B3LYP/LAN2DZ level.

E 5	7
	/

С	0.00000	0.00000	0.00000
ĉ	0.000000	0.000000	1 112152
C	0.000000	0.000000	1.413133
С	1.196656	0.000000	2.168245
С	2.417430	-0.004009	1.470575
С	2,465547	-0.013518	0.060051
Ċ	1 251207	-0.006467	-0 652713
0	1.251207	-0.000407	-0.032713
Ν	-1.270723	0.048029	2.119148
С	-1.921467	1.257313	2.416821
С	-3.074804	0.930965	3.078697
N	-3 104287	-0 470788	3 171311
0	1 001/04	1 027210	0.571011
C	-1.991684	-1.03/310	2.5/9040
С	-4.192469	-1.187393	3.817432
С	-5.342485	-1.512811	3.063337
С	-6.395057	-2.174676	3.730714
Ċ	-6 320002	-2 507640	5 096883
c	5.520502 E 1ECOEO	2.307040	5.050005 E 01000E
C	-2.120928	-2.154/01	5.812805
С	-4.079299	-1.497314	5.193413
С	-5.454253	-1.190694	1.585876
С	-2.829551	-1.159319	5,984300
Ċ	-7 /573/7	-3 230375	5 786521
-	-1.437347	-3.239373	0.05700521
ln	-1.543/89	-3.2/61/1	2.25/805
С	0.555704	-3.574760	1.891563
С	1.179281	-0.018945	3.685138
С	3.798117	-0.043247	-0.665153
C	-1 204652	-0.012400	_0 005150
C	-1.204033	-0.012499	-0.803130
C	-2.603366	-4.4/5203	3.696485
Cl	-2.767168	-3.378477	0.061097
Н	-3.860405	1.547869	3.482214
Н	-1.511374	2,212539	2.134106
ц Ц	1 155000	-2 456762	2 006020
11	1.133009	-3.430702	2.000020
Н	0.942595	-2.88/304	1.1299/3
Н	0.698341	-4.601970	1.526417
Н	-2.557827	-5.523721	3.368871
Н	-3.659135	-4.190246	3,775895
н	-2 147971	-4 414979	4 696435
11	2 246005	0 010150	2 026045
н	3.346805	-0.010150	2.036945
Н	1.270853	-0.013384	-1.740244
Н	-5.083009	-2.405209	6.869384
Н	-7.285456	-2.439148	3.164673
н	3 671902	0 100455	-1 743762
ц Ц	1 172020	0 720775	-0.205009
п	4.4/2020	0.739773	-0.293008
Н	4.304541	-1.006/95	-0.5152//
Н	-8.338323	-3.313969	5.139775
Н	-7.157703	-4.260741	6.059171
н	-7.757738	-2.730643	6.711915
ц.	2 189627	0 116233	1 084670
11	2.109027	0.110233	4.101225
Н	0.541/58	0.//1485	4.101335
Н	0.797052	-0.976748	4.062659
Н	-1.073159	0.152905	-1.866789
Н	-1.800457	-0.978049	-0.711919
н	-1 985374	0 765170	-0 474733
11	-2 007007	_1 220502	7 052570
п	-2.30/00/	-1.339302	1.052579
Н	-1.981621	-1.779592	5.664118
Н	-2.530623	-0.111070	5.857870
Н	-6.476703	-1.361409	1.232969
н	-5,191762	-0.146932	1.370631
ц Ц	_1 700100	_1 825070	0 001/00
н	-4./82480	-1.0230/0	0.991423