Dalton 09-04—George Britovsek

VG0149 ([Fe(1)(OTf)₂]), VG0150 ([Fe(1)(OTf)(CH₃CN)](SbF₆)), GB0301 ([Fe(2)(CH₃CN)₃](SbF₆)₂), GB0201 ([Ru(2)(CH₃CN)₃](SbF₆)₂), GB0205 ([Mn(2)(OTf)₂(H₂O)])

Supplementary Data — X-Ray Crystallography for B414813D

Manuscri	pt:Synthesis of iron(II), manganese(II), cobalt(II) and ruthenium(II)complexes containing tridentate nitrogen ligands and their application
	in the catalytic oxidation of alkanes
Authors:	George J.P. Britovsek, Jason England, Stefan K. Spitzmesser,
	Andrew J.P. White and David J. Williams
Fig. S1	The molecular structure of one (\mathbf{B}) of the two independent molecules present in
	the crystals of $[Ru(2)(CH_3CN)_3](SbF_6)_2$.
Fig. S2	The molecular structure of $[Fe(1)(OTf)_2]$ (30% probability ellipsoids).
Fig. S3	The molecular structure of $[Fe(1)(OTf)(CH_3CN)](SbF_6)$ (30% probability ellipsoids).
Fig. S4	The molecular structure of $[Fe(2)(CH_3CN)_3](SbF_6)_2$ (50% probability ellipsoids).
Fig. S5	The molecular structure of one (A) of the two independent molecules present in
	the crystals of $[Ru(2)(CH_3CN)_3](SbF_6)_2$ (30% probability ellipsoids).
Fig. S6	The molecular structure of one (\mathbf{B}) of the two independent molecules present in
	the crystals of $[Ru(2)(CH_3CN)_3](SbF_6)_2$ (30% probability ellipsoids).
Fig. S7	The molecular structure of $[Mn(2)(OTf)_2(H_2O)]$ (50% probability ellipsoids).
Fig. S8	DQF-COSY $^1\text{H-NMR}$ spectrum of the paramagnetic complex $[Fe(1)Cl_2]$ in $CD_2Cl_2.$

1

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Fig. S6

Figure S8 depicts the DQF-COSY paramagnetic ¹H-NMR spectrum of complex [Fe(1)Cl₂] in CD₂Cl₂. Although the one-dimensional ¹H NMR spectrum appears as singlets only, cross peaks are clearly visible in the DQF-COSY spectrum, revealing the coupling between the *meta* and *para* pyridyl protons A and B and the *meta* and *para* phenyl protons C and D, thus making these peak assignments unambiguous. No coupling between the isopropyl methyl protons at $\delta = -5.3$ and -6.3 ppm and the methine protons at $\delta = -22.4$ ppm, probably due to the severe broadening of the latter. These signals are therefore considered as singlets and disappear from the diagonal, as do the ligand backbone methyls at $\delta = -37.1$ ppm. The signals in the diamagnetic region are due to solvent residues (thf and dcm).

