Electronic Supplementary Material

Dinuclear bis- β -diketonato ligand derivatives of iron(III) and copper(II) and use of the latter as components for the assembly of extended metallosupramolecular structures

Jack K. Clegg,^{*a*} Leonard F. Lindoy,^{*a*} John C. McMurtrie^{*a,b*} and David Schilter^{*a*}

^{*a*} Centre for Heavy metals Research, School of Chemistry, University of Sydney, NSW 2006, Australia.

^b School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Australia.

Individual crystal structure refinement details

1,1'-(1,3-phenylene)-bis-3,3-dimethylpentane-1,3-dione (5H₂)

In the solid state the free ligand, $5H_2$, has two-fold crystallographic symmetry (atoms C(10) and C(11) lie on the 2-fold axis) and therefore the asymmetric unit consists of one half of the ligand. The ligand is present as the enol tautomer with enol groups oriented as shown in Figure 1 (donors directed at 120° with respect to each other). As is characteristic of β -diketones, the sixmembered rings incorporating the hydrogen-bonding are approximately planar. The enol planes are rotated by *ca*. 30° from the mean plane of the central benzene ring and the dihedral angle between the two enol planes is approximately 55°. These rotations almost certainly occur as a

result of steric conflict between O(2) and the C(9) hydrogen, as well as between the C(6) hydrogen and the C(11) hydrogen.

$[Cu_2(5)_2azpy]_n \cdot (2THF)_n$

The asymmetric unit contains fragments from two crystallographically independent polymeric chains. Each of these fragments consists of half of the repeating polymeric unit (*i.e.* $[Cu(5)azpy_{0.5}]\cdot(THF))$ which replicates with inversion symmetry. The pyridyl ring of the 4,4'- *trans*-azopyridine ligand comprising atoms N(1) and C(41)-C(45) is disordered and was modelled with two alternate positions, denoted A and B, with occupancy fractions of 0.8 and 0.2 respectively. The THF molecule comprising atoms O(2T) and C(5T)-C(8T) is disordered and was modelled with an alternate position comprising atoms O(3T) and C(9T)-C12(T) (occupancy fractions 0.55 and 0.45 respectively). ORTEP representations of the two crystallographically independent components of the asymmetric unit are provided in Fig. S2.

Figure S1. Illustrations of the two crystallographically independent complexes in the structure of $[Cu_2(5)_2(dmapy)_2] \cdot 3.25$ THF. Both of the asymmetric components have crystallographic inversion symmetry (codes: ^I -*x* + 1, -*y* + 1, -*z*; ^{II} -*x* + 1, -*y*, -*z*). Thermal ellipsoids are drawn at the 40% probability level.

Figure S2. ORTEP representations of fragments from the two crystallographically independent polymeric chains containing $[Cu_2(5)_2(azpy)_2]$ ·2THF units (symmetry codes: ¹ -*x*, -*y* + 1, -*z* -1; ^{II} -*x*, -*y* + 2, -*z* - 1; ^{III} -*x* + 1, -*y* + 1, -*z* - 2; ^{IV} -*x* + 1, -*y*, -*z* - 2).

$[Fe_2(5-H_2)_3]$ ·Et ₂ O			
Fe(1)-O(1)	1.975(2)	Fe(2)-O(3)	1.983(2)
Fe(1)-O(2)	1.981(1)	Fe(2)-O(4)	1.979(2)
Fe(1)-O(5)	2.000(2)	Fe(2)-O(7)	2.017(2)
Fe(1)-O(6)	1.9940(2)	Fe(2)-O(8)	1.988(2)
Fe(1)-O(9)	1.999(2)	Fe(2)-O(11)	1.981(2)
Fe(1)-O(10)	2.014(1)	Fe(2)-O(12)	2.002(2)
O(1)-Fe(1)-O(2)	85.70(6)	O(3)-Fe(2)-O(4)	85.97(6)
O(1)-Fe(1)-O(5)	89.09(6)	O(3)-Fe(2)-O(7)	87.00(6)
O(1)-Fe(1)-O(6)	104.25(6)	O(3)-Fe(2)-O(8)	96.84(6)
O(1)-Fe(1)-O(9)	87.42(6)	O(3)-Fe(2)-O(11)	90.09(6)
O(1)-Fe(1)-O(10)	168.78(7)	O(3)-Fe(2)-O(12)	173.64(7)
O(2)-Fe(1)-O(5)	170.19(7)	O(4)-Fe(2)-O(7)	171.10(6)
O(2)-Fe(1)-O(6)	88.46(6)	O(4)-Fe(2)-O(8)	90.26(6)
O(2)-Fe(1)-O(9)	100.54(7)	O(4)-Fe(2)-O(11)	101.23(6)
O(2)-Fe(1)-O(10)	88.10(6)	O(4)-Fe(2)-O(12)	90.41(6)
O(5)-Fe(1)-O(6)	84.77(6)	O(7)-Fe(2)-O(8)	85.18(6)
O(5)-Fe(1)-O(9)	87.50(7)	O(7)-Fe(2)-O(11)	84.21(6)
O(5)-Fe(1)-O(10)	98.33(6)	O(7)-Fe(2)-O(12)	97.08(6)
O(6)-Fe(1)-O(9)	165.86(6)	O(8)-Fe(2)-O(11)	167.00(6)
O(6)-Fe(1)-O(10)	84.90(6)	O(8)-Fe(2)-O(12)	88.39(6)
O(9)-Fe(1)-O(10)	84.53(6)	O(11)-Fe(2)-O(12)	85.49(6)

Table S1. Selected bond lengths (Å) and angles (°) for $[Fe_2(5-H_2)_3]$ ·Et₂O

Table S2. Selected bond lengths (Å) and angles (°) for $[Cu_2(5-H_2)_2(thf)_2]$ a	and
---	-----

[Cu ₂ (5-H ₂))2(py)2	ŀpv
	/2(PJ)/2	1 4 7

[Cu ₂ (5 -I	$H_2)_2(thf)_2]$	[Cu ₂ (5 -H ₂) ₂ (py) ₂]·py
Cu(1)-O(1)	1.912(1)	Cu(1)-O(1)	1.931(1)
Cu(1)-O(2)	1.918(1)	Cu(1)-O(2)	1.928(1)
$Cu(1)-O(3^{I})$	1.932(1)	$Cu(1)-O(3^{I})$	1.929(1)
$Cu(1)-O(4^{I})$	1.915(1)	$Cu(1)-O(4^{I})$	1.942(1)
Cu(1)-O(5)	2.343(1)	Cu(1)-N(1)	2.278(2)
O(1)-Cu(1)-O(2)	92.70(5)	O(1)-Cu(1)-O(2)	92.93(6)
$O(1)-Cu(1)-O(3^{I})$	171.87(5)	$O(1)-Cu(1)-O(3^{I})$	165.90(6)
$O(1)-Cu(1)-O(4^{I})$	85.32(5)	$O(1)-Cu(1)-O(4^{I})$	87.58(6)
$O(2)-Cu(1)-O(3^{I})$	89.14(4)	$O(2)-Cu(1)-O(3^{I})$	86.05(6)
$O(2)-Cu(1)-O(4^{I})$	172.03(5)	$O(2)-Cu(1)-O(4^{I})$	173.29(6)
$O(3^{I})-Cu(1)-O(4^{I})$	91.78(4)	$O(3^{I})-Cu(1)-O(4^{I})$	91.82(6)
O(1)-Cu(1)-O(5)	92.90(5)	O(1)-Cu(1)-N(1)	95.63(6)
O(2)-Cu(1)-O(5)	90.91(5)	O(2)-Cu(1)-N(1)	96.53(6)
$O(3^{I})-Cu(1)-O(5)$	94.99(4)	$O(3^{I})-Cu(1)-N(1)$	98.46(6)
$O(4^{I})-Cu(1)-O(5)$	96.90(4)	$O(4^{I})-Cu(1)-N(1)$	90.08(6)

¹-*x*, -*y*, -*z*

¹-*x*, -*y*, -*z*

$[Cu_2(5-H_2)_2(dmapy)_2]\cdot 3.25thf$			
Molecu	le 1	Molecul	le 2
Cu(1)-O(1)	1.926(3)	Cu(2)-O(5)	1.933(3)
Cu(1)-O(2)	1.941(3)	Cu(2)-O(6)	1.929(3)
$Cu(1)-O(3^{I})$	1.946(3)	$Cu(2)$ - $O(7^{II})$	1.933(3)
$Cu(1)-O(4^{I})$	1.944(3)	Cu(2)-O(8 ^{II})	1.939(3)
Cu(1)-N(1)	2.224(4)	Cu(2)-N(3)	2.252(4)
	00 10/10		21.2(1)
O(1)- $Cu(1)$ - $O(2)$	92.19(12)	O(5)- $Cu(2)$ - $O(6)$	91.9(1)
$O(1)-Cu(1)-O(3^{I})$	166.1(2)	$O(5)-Cu(2)-O(7^{II})$	165.9(1)
$O(1)-Cu(1)-O(4^{I})$	84.4(1)	$O(5)-Cu(2)-O(8^{II})$	86.6(1)
$O(2)-Cu(1)-O(3^{I})$	88.6(1)	$O(6)-Cu(2)-O(7^{II})$	87.6(1)
$O(2)-Cu(1)-O(4^{I})$	165.2(2)	$O(6)-Cu(2)-O(8^{II})$	170.3(1)
$O(3^{I})-Cu(1)-O(4^{I})$	91.3(1)	$O(7^{II})-Cu(2)-O(8^{II})$	91.5(1)
O(1)-Cu(1)-N(1)	94.4(2)	O(5)-Cu(2)-N(3)	97.6(1)
O(2)-Cu(1)-N(1)	100.0(1)	O(6)-Cu(2)-N(3)	100.0(1)
$O(3^{I})-Cu(1)-N(1)$	99.1(1)	$O(7^{II})-Cu(2)-N(3)$	96.4(1)
O(4 ^I)-Cu(1)-N(1)	94.6(2)	O(8 ^{II})-Cu(2)-N(3)	89.7(1)

Table S3. Selected bond lengths (Å) and angles (°) for $[Cu_2(5-H_2)_2(dmapy)_2]\cdot 3.25$ thf.

x + 1, -y + 1, -z; x + 1, -y, -z

Table S4. Selected bond lengths (Å) and an	igles (°) for [Cu ₂ (5 -H ₂) ₂ (bipy) ₂]·2bipy
--	--

[Cu ₂ (5 -H ₂) ₂ (bipy) ₂]·2bipy			
Cu(1)-O(1)	1.9282(14)	$Cu(1)$ - $O(4^{I})$	1.9316(13)
Cu(1)-O(2)	1.9236(13)	Cu(1)-N(1)	2.3082(17)
$Cu(1)-O(3^{I})$	1.9331(14)		
O(1)-Cu(1)-O(2)	92.34(6)	$O(3^{I})-Cu(1)-O(4^{I})$	92.08(6)
$O(1)-Cu(1)-O(3^{I})$	167.60(6)	O(1)-Cu(1)-N(1)	95.94(6)
$O(1)$ - $Cu(1)$ - $O(4^{I})$	86.83(6)	O(2)-Cu(1)-N(1)	94.68(6)
$O(2)-Cu(1)-O(3^{I})$	87.61(6)	$O(3^{I})-Cu(1)-N(1)$	96.42(6)
O(2)-Cu(1)-O(4 ^I)	174.71(6)	$O(4^{I})-Cu(1)-N(1)$	90.61(6)

 $\overline{\ }$ -*x*, -*y*, -*z* + 1

$[Cu_2(5-H_2)_2azpy]_n \cdot (2THF)_n$			
Mole	cule 1	Moleo	cule 2
Cu(1)-O(1)	1.975(6)	Cu(2)-O(5)	1.946(6)
Cu(1)-O(2)	1.924(5)	Cu(2)-O(6)	1.923(5)
$Cu(1)-O(3^{I})$	1.936(6)	$Cu(2)$ - $O(7^{III})$	1.946(6)
$Cu(1)-O(4^{I})$	1.902(6)	Cu(2)-O(8 ^{III})	1.923(5)
N(1A)-Cu(1)	2.332(6)	N(4)-Cu(2)	2.325(7)
O(1)-Cu(1)-O(2)	91.1(2)	O(5)-Cu(2)-O(6)	91.9(2)
$O(1)-Cu(1)-O(3^{I})$	169.5(3)	O(5)-Cu(2)-O(7 ^{III})	171.5(3)
$O(1)-Cu(1)-O(4^{I})$	87.4(3)	O(5)-Cu(2)-O(8 ^{III})	87.7(2)
$O(2)-Cu(1)-O(3^{I})$	86.6(2)	O(6)-Cu(2)-O(7 ^{III})	86.7(2)
O(2)-Cu(1)-O(4 ^I)	171.3(2)	O(6)-Cu(2)-O(8 ^{III})	171.0(3)
$O(3^{I})-Cu(1)-O(4^{I})$	93.3(2)	$O(7^{III})$ - $Cu(2)$ - $O(8^{III})$	92.3(2)
O(1)-Cu(1)-N(1A)	93.1(3)	O(5)-Cu(2)-N(4)	92.0(3)
O(2)-Cu(1)-N(1A)	97.3(2)	O(6)-Cu(2)-N(4)	96.0(2)
O(3 ^I)-Cu(1)-N(1A)	97.4(2)	$O(7^{III})-Cu(2)-N(4)$	96.5(2)
$O(4^{I})-Cu(1)-N(1A)$	91.3(2)	$O(8^{III})-Cu(2)-N(4)$	93.0(2)

Table S5. Selected bond lengths (Å) and angles (°) for $[Cu_2(5-H_2)_2(azpy)_2]$ ·2THF

¹ -x, -y + 1, -z - 1; ^{III} -x + 1, -y + 1, -z - 2

$[Cu_4(5\text{-}H_2)_4(pz)_2]\cdot 4THF$			
Cu(1)-O(1)	1.9240(16)	Cu(2)-O(3)	1.9160(16)
Cu(1)-O(2)	1.9222(15)	Cu(2)-O(4)	1.9295(16)
Cu(1)-O(5)	1.9200(16)	Cu(2)-O(7)	1.9278(16)
Cu(1)-O(6)	1.9346(15)	Cu(2)-O(8)	1.9227(16)
Cu(1)-N(1)	2.366(2)	Cu(2)-N(2 ^I)	2.343(2)
O(1)-Cu(1)-O(2)	93.03(7)	O(3)-Cu(2)-O(4)	92.88(7)
O(1)-Cu(1)-O(5)	86.57(7)	O(3)-Cu(2)-O(7)	87.24(7)
O(1)-Cu(1)-O(6)	176.16(7)	O(3)-Cu(2)-O(8)	176.58(7)
O(2)-Cu(1)-O(5)	172.00(7)	O(4)-Cu(2)-O(7)	168.71(8)
O(2)-Cu(1)-O(6)	87.96(6)	O(4)-Cu(2)-O(8)	87.02(7)
O(5)-Cu(1)-O(6)	91.94(7)	O(7)-Cu(2)-O(8)	92.19(7)
O(1)-Cu(1)-N(1)	94.64(8)	$O(3)-Cu(2)-N(2^{I})$	92.53(8)
O(2)-Cu(1)-N(1)	94.38(7)	$O(4)-Cu(2)-N(2^{I})$	92.22(8)
O(5)-Cu(1)-N(1)	93.62(8)	$O(7)$ - $Cu(2)$ - $N(2^{I})$	99.05(8)
O(6)-Cu(1)-N(1)	88.98(7)	$O(8)$ - $Cu(2)$ - $N(2^{I})$	90.88(7)

Table S6. Selected bond lengths (Å) and	angles (°) for $[Cu_4(5-H_2)_4(pz)_2]$ ·4THF
---	--

 $1 -x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$