Supplementary information

Table S1 The B3LYP optimised coordinates for $[1]^+$ and $[2]^+$

 $[1]^{+}$

С	0.325392	-3.073295	-0.840570
N	-0 493616	-2 070318	-0 492040
C	-1 774472	-2 255602	-0 107060
	-1.//44/3	-2.333003	-0.107900
C	-2.226243	-3.6/5280	-0.052897
С	-1.366449	-4.713499	-0.405095
С	-0.068478	-4.408587	-0.810133
Ru	-0.110457	0.002999	-0.538723
Ν	-1.997936	0.000155	0.052228
С	-2.625268	1.185146	0.211774
С	-3.967989	1.207738	0.597050
C	-4 633785	-0 002955	0 790580
C	-3 968288	-1 2119/3	0 585739
C	-3.900200	1 196060	0.303739
	-2.020041	-1.100009	0.200692
C	-1.//3992	2.35/329	-0.086017
Ν	-0.493392	2.075211	-0.473267
С	0.325842	3.080936	-0.813205
С	-0.067402	4.416045	-0.770067
С	-1.364972	4.717707	-0.361275
С	-2.225109	3.676642	-0.018395
Cl	-0.979869	0.012760	-2.807438
Ν	2.014323	0.007285	-0.981515
N	2 764801	-0 002684	0 182658
C	A 12111A	-0 000302	-0 089658
C	A 01/260	0.000502	-1 461649
	4.214300	0.011347	-1.401040
C	2.895999	0.016015	-1.9858/1
С	2.072125	-0.009614	1.391429
Ν	0.710485	-0.006851	1.298254
Ν	0.014824	-0.012490	2.426419
С	0.722886	-0.020849	3.577630
Ν	2.077246	-0.024441	3.669141
Ν	2.744006	-0.018396	2.532847
С	2.497624	0.027479	-3.426265
C	5 207316	-0 009196	0 935912
N	0 032708	-0.026311	4 733777
U U	1 112756	0.020011	-3 5/0533
11	1.412/00	0.04/021	-3.340333
н	-0.9/5291	-0.024300	4.727792
Н	2.92/498	0.901699	-3.929302
Н	2.893281	-0.86008/	-3.934333
Н	5.130732	0.016481	-2.034376
Н	6.171608	-0.005952	0.421812
Н	5.154358	0.863571	1.593697
Н	5.152864	-0.892115	1.579872
Н	0.536277	-0.032899	5.608221
Н	1.319298	2.789843	-1.134822
Н	0 631783	5 193728	-1 057409
и П	-1 708059	5 7/6//7	-0.316662
 Ц	-3 2/2502	3 800301	0.010002
11	-3.242302	J.090394 J.14E000	0.200410 0.721002
п 	-4.493224	2.143980	U./JI893
н	-5.6//932	-0.004198	1.085937
H	-4.493778	-2.151259	0.711794
H	-3.243888	-3.891360	0.251423
Н	-1.710062	-5.742445	-0.370406
Н	0.630585	-5.183853	-1.104219

Η	1.319390	-2.780039	-1.158536
		$[2]^{+}$	
NCNNCNNNCCCRCCNNCCCCCNCCCCNC	-4.014189 -2.690065 -1.881053 -2.463945 -3.817962 -4.620859 -2.034734 -0.655906 -0.265615 -1.399272 -2.518617 0.146666 0.745527 1.175252 -3.962642 -4.410100 0.554667 -0.302283 0.091264 1.432828 2.331785 1.876629 2.761602 2.112275 2.761615 4.148752 4.838183 4.148738 1.876657 0.554690 -0.302248	[2] ⁺ -0.000032 -0.00018 0.00045 0.000122 0.000127 0.000036 -0.000077 -0.000053 -0.000098 -0.000154 -0.000154 -0.000154 -0.000155 0.000089 -0.000177 0.000233 -2.067183 -3.077139 -4.412352 -4.716358 -3.674013 -2.354075 -1.184551 -0.000088 1.184526 1.208962 -0.000032 -1.209013 2.354071 2.067205 3.077183	0.357669 0.393727 -0.706917 -1.889120 -1.907381 -0.811150 1.626603 1.603448 2.880085 3.725060 2.920312 -0.368976 -2.705204 3.283625 3.302316 -3.113097 -0.335474 -0.551026 -0.557419 -0.335247 -0.123481 -0.134131 0.041104 -0.000079 0.041171 0.208052 0.301810 0.207983 -0.133995 -0.335351 -0.550842
C	0.091314	4.412393	-0.557157
C	1.432882	4.716370	-0.334970
C	2.331828	3.674002	-0.123268
H	-4.487302	0.877953	2.914009
H	-3.845780	0.000232	-3.950345
H	-4.034353	-0.000237	4.392776
H	-4.487280	-0.878276	2.913913
H	-1.396299	-0.000200	4.805527
H	1.696981	-0.884811	2.904109
H	1.257212	-0.000131	4.373227
H H H H	-5.417324 -1.332246 -0.643700	0.884682 0.000173 2.795098 5.188872	-3.174808 -0.734371 -0.739092
H	1.777641	5.745421	-0.333431
H	3.382184	3.886085	0.039933
H	4.688404	2.147853	0.247233
н	5.915900	-0.000042	0.427753
Н	4.688379	-2.147912	0.247111
Н	3.382139	-3.886117	0.039709
H	1.777576	-5.745412	-0.333768
H	-0.643758	-5.188812	-0.739401
H	-1.332277	-2.795031	-0.734540

State	Energy	Oscillator	$\Psi_{\rm O}$ – $\Psi_{\rm V}$ ^{<i>a</i>}	Type of transitions
	$(\times 10^3 \text{ cm}^{-1})$	strength		
1	13.74	0.0001	HOMO-1> LUMO (0.68)	Ru _{dxz} , Cl> π * (N _t)
2	14.88	0.0066	HOMO-2> LUMO (0.56)	$Ru_{dxy} \longrightarrow \pi * (N_t)$
			HOMO> LUMO (0.38)	Ru _{dxz} , Cl> π * (N _t)
3	18.52	0.0058	HOMO-2> LUMO+1 (0.13)	Ru _{dxy} > π * (trpy)
			HOMO> LUMO+1 (0.68)	Ru _{dxz} , Cl> π (trpy)
4	19.00	0.1282	HOMO> LUMO (0.39)	$Ru_{dxz}, Cl \dots > \pi * (N_t)$
5	19.92	0.0319	HOMO-1> LUMO+1 (0.45)	Ru _{dxz} , Cl> π * (trpy)
			HOMO> LUMO (0.26)	Ru _{dxz} , Cl> π * (N _t)
			HOMO> LUMO+2 (0.38)	Ru _{dxz} , Cl> π * (trpy)
6	20.68	0.000	HOMO-2> LUMO+1 (0.66)	$\operatorname{Ru}_{dxy} \longrightarrow \pi * (trpy)$
7	20.85	0.0169	HOMO-2> LUMO+1 (0.16)	Ru _{dxy} > π* (trpy)
			HOMO-1> LUMO+2 (0.67)	Ru _{dxz} , Cl> π *(trpy)
8	21.20	0.0016	HOMO-6> LUMO+1 (0.59)	$n_n(N_t) \dashrightarrow \pi * (trpy)$
9	21.52	0.0163	HOMO-2> LUMO (0.10)	$Ru_{dxy} \longrightarrow \pi * (N_t)$
			HOMO-2> LUMO+2 (0.15)	$\operatorname{Ru}_{dxy} \longrightarrow \pi * (trpy)$
			HOMO> LUMO+2 (0.56)	Ru _{dxz} , Cl> π * (trpy)
10	23.15	0.0036	HOMO-2> LUMO+2 (0.67)	$\operatorname{Ru}_{dxy} \longrightarrow \pi * (trpy)$

Table S2 Singlet excited states of [1]⁺ computed at the TD–DFT /B3LYP// B3LYP// LanL2DZ level* (geometry optimised)

Los Alamos effective core potential for the Ru core electrons with DZ functions for the valence orbitals and a $6-31G^$ basis set for all other elements.

 ${}^{a}\Psi_{O}$ and Ψ_{V} are the occupied and virtual orbitals respectively, that define the transition.trpy – terpyridine, N_t – tetrazine, N_p – pyrazol, n_n– σ –type lone pair orbital.

State	Energy	Oscillator	$\Psi_{\rm O}$ – $\Psi_{\rm V}$ ^{<i>a</i>}	Type of transitions
	$(\times 10^3 {\rm cm}^{-1})$	strength		
1	11.55	0.0001	HOMO> LUMO (0.69)	$Ru_{dyz,}Cl \longrightarrow \pi * (N_t)$
2	12.92	0	HOMO-1> LUMO (0.69)	Ru_{dxz} , $Cl \longrightarrow \pi * (N_t)$
3	15.97	0.0087	HOMO> LUMO+1 (0.69)	Ru _{dyz} , Cl> π* (trpy)
4	17.99	0.0014	HOMO> LUMO+2(0.51)	$Ru_{dyz,}Cl \longrightarrow \pi^* (trpy)$
5	19.24	0.0661	HOMO-2> LUMO (0.15)	$\operatorname{Ru}_{dxy} \longrightarrow \pi * (N_t)$
			HOMO-1> LUMO+1(0.46)	Ru _{dxz} , Cl> π* (trpy)
			HOMO> LUMO+2 (0.47)	$Ru_{dyz,}Cl \longrightarrow \pi^* (trpy)$
6	19.68	0.0143	HOMO-1> LUMO+2(0.70)	Ru _{dxz} , Cl> π* (trpy)
7	20.84	0.0022	HOMO-6> LUMO(0.63)	$n_n(N_t) \dashrightarrow \pi * (N_t)$
8	21.74	0.0003	HOMO-2> LUMO (0.68)	$Ru_{dxy} \dots > \pi * (N_t)$
9	21.75	0.0936	HOMO-3> LUMO (0.20)	$Ru_{dyz,}Cl \longrightarrow \pi^*(N_t)$
			HOMO-2> LUMO+1 (0.55)	$\operatorname{Ru}_{dxy} \longrightarrow \pi^* (trpy)$
10	22.74	0.0101	HOMO-3> LUMO(0.64)	$Ru_{dyz,}Cl \dots > \pi * (N_t)$
			HOMO> LUMO+3 (0.20)	$\begin{array}{c} Ru_{dyz,} Cl \dashrightarrow \pi * (trpy), \\ \pi * (N_t) \end{array}$

Table S3 Singlet excited states of [2]⁺computed at the TD–DFT/B3LYP// B3LYP/ LanL2DZ level* (geometry optimised)

Los Alamos effective core potential for the Ru core electrons with DZ functions for the valence orbitals and a $6-31G^$ basis set for all other elements.

 $^a\Psi_O$ and Ψ_V are the occupied and virtual orbitals respectively, that define the transition. trpy – terpyridine, N_t – tetrazine, N_p – pyrazol, n_n – σ –type lone pair orbital.

State	Energy $(\times 10^3 \text{ cm}^{-1})$	Oscillator strength	$\Psi_{\rm O}$ – $\Psi_{\rm V}$ ^{<i>a</i>}	Type of transitions
1	13.21	0.0001	HOMO> LUMO (0.65)	$\operatorname{Ru}_{\operatorname{dyz}}\operatorname{Cl} \dots > \pi * (N_t)$
2	14.81	0.0068	HOMO-2> LUMO+1 (0.55)	$\operatorname{Ru}_{dxy} \longrightarrow \pi^*$ (trpy)
			HOMO-1> LUMO+1 (0.37)	$\operatorname{Ru}_{dxz,}\operatorname{Cl} \dots > \pi * (trpy)$
3	18.48	0.0049	HOMO-2> LUMO+1 (0.13)	$\operatorname{Ru}_{dxy} \longrightarrow \pi^*$ (trpy)
			HOMO-1> LUMO+1 (0.64)	$\operatorname{Ru}_{dxz_{3}}\operatorname{Cl} \dots > \pi * (\operatorname{trpy})$
			HOMO> LUMO+1 (0.22)	$\operatorname{Ru}_{\operatorname{dyz}}$ Cl> π * (trpy)
4	18.92	0.0621	HOMO-2> LUMO (0.22)	$Ru_{dxy} > \pi * (N_t)$
			HOMO> LUMO+1 (0.57)	$\operatorname{Ru}_{dyz,}\operatorname{Cl} \dots > \pi * (trpy)$
5	20.03	0.0836	HOMO-1> LUMO (0.38)	$\operatorname{Ru}_{\operatorname{dxz}},\operatorname{Cl} \longrightarrow \pi^*(\operatorname{N}_t)$
			HOMO> LUMO (0.10)	$\operatorname{Ru}_{\operatorname{dyz}},\operatorname{Cl} \dashrightarrow \pi * (N_t)$
			HOMO→ LUMO+1 (0.28)	Ru _{dyz} , Cl> π* (trpy)
6	20.43	0.0126	HOMO> LUMO+2 (0.68)	$Ru_{dyz,}Cl \longrightarrow \pi*(trpy)$
7	20.98	0.0021	HOMO-2> LUMO+1 (0.67)	$Ru_{dxy} \longrightarrow \pi * (trpy)$
8	21.14	0.0128	HOMO-2> LUMO+2 (0.12)	Ru _{dxy} > π* (trpy)
			HOMO-1> LUMO+2 (0.62)	Ru _{dxz,} Cl> π* (trpy)
			HOMO> LUMO+1 (0.20)	$Ru_{dyz,}Cl \dots > \pi * (trpy)$
9	21.58	0.0012	HOMO-5> LUMO (0.12)	$Ru_{dxz,}Cl> \pi * (N_t)$
			HOMO-4> LUMO (0.59)	$n_n(N_t) \dashrightarrow \pi * (N_t)$
10	23.48	0.0063	HOMO-2> LUMO+2 (0.68)	$\operatorname{Ru}_{dxy} \longrightarrow \pi^*$ (trpy)

Table S4 Singlet excited states of $[1]^+$ computed at the TD–DFT/B3LYP level for X–ray structure*

Los Alamos effective core potential for the Ru core electrons with DZ functions for the valence orbitals and a $6-31G^$ basis set for all other elements.

 $^a\Psi_O$ and Ψ_V are the occupied and virtual orbitals respectively, that define the transition. trpy – terpyridine, N_t – tetrazine, N_p – pyrazol, n_n – σ –type lone pair orbital.

State	Energy $(\times 10^3 \text{ cm}^{-1})$	Oscillator strength	$\Psi_{\rm O}$ – $\Psi_{\rm V}$ ^{<i>a</i>}	Type of transitions
1	10.53	0.0006	HOMO> LUMO (0.69)	$Ru_{dyz,}Cl \longrightarrow \pi^*(N_t)$
2	12.58	0.0022	HOMO-1> LUMO (0.68)	$Ru_{dxz_{s}}Cl \dots > \pi * (N_{t})$
3	15.35	0.0114	HOMO> LUMO+1 (0.69)	Ru _{dyz} , Cl> π* (trpy)
4	17.60	0.0008	HOMO-1> LUMO+1 (0.45)	$\operatorname{Ru}_{dxz,}\operatorname{Cl} \dots > \pi * (trpy)$
			HOMO> LUMO+2 (0.53)	$\operatorname{Ru}_{dyz,}\operatorname{Cl} \dots > \pi * (trpy)$
5	19.03	0.0545	HOMO-2> LUMO (0.12)	$\operatorname{Ru}_{\operatorname{dxy}} \operatorname{>} \pi * (N_t)$
			HOMO-1> LUMO+1(0.49)	Ru _{dxz} , Cl> π* (trpy)
6	19.72	0.0126	HOMO-1> LUMO+2 (0.69)	$\operatorname{Ru}_{\operatorname{dxz}}$ Cl> π * (trpy)
7	21.33	0.013	HOMO-6> LUMO (0.53)	$n_n(N_t)> \pi * (N_t)$
8	22.09	0.0576	HOMO-6> LUMO+1 (0.27)	$n_n(N_t) \dashrightarrow \pi * (trpy)$
			HOMO-3> LUMO (0.22)	$Ru_{dyz,}Cl \dots > \pi * (N_t)$
			HOMO-2> LUMO (0.42)	$Ru_{dxy}> \pi * (N_t)$
			HOMO-2> LUMO+1 (0.12)	$\operatorname{Ru}_{dxy} \dashrightarrow \pi * (trpy)$
9	22.21	0.0012	HOMO-4> LUMO (0.12)	$Ru_{dyz,}Cl \dots > \pi * (N_t)$
			HOMO-2> LUMO+1 (0.53)	$Ru_{dxy} \longrightarrow \pi * (trpy)$
10	22.33	0.0223	HOMO-3> LUMO (0.54)	$Ru_{dyz,}Cl \dots > \pi * (N_t)$
			HOMO-2> LUMO (0.17)	$Ru_{dxy} \dashrightarrow \pi * (N_t)$
			HOMO> LUMO+3 (0.25)	$\frac{Ru_{dyz,} Cl \dots > \pi^*(N_t)}{\pi^*(N_P)}$

Table S5 Singlet excited states of $[2]^+$ computed at the TD–DFT/B3LYP level for X–ray structure*

Los Alamos effective core potential for the Ru core electrons with DZ functions for the valence orbitals and a $6-31G^$ basis set for all other elements.

 $^a\Psi_O$ and Ψ_V are the occupied and virtual orbitals respectively, that define the transition. trpy – terpyridine, N_t – tetrazine, N_p – pyrazol, n_n – σ –type lone pair orbital.

	[1] ⁺	[2] ⁺
MO No.	eV	cm^{-1}	eV	cm^{-1}
HOMO-4	-9.3909	-75743	-9.2682	-74754
НОМО-3	-9.1360	-73687	-9.1104	-73481
НОМО-2	-8.485	-68437	-8.5950	-69324
HOMO-1	-8.1808	-65983	-8.0165	-64658
НОМО	-8.1550	-65775	-7.8489	-63306
LUMO	-5.5870	-45063	-5.5313	-44613
LUMO+1	-4.9914	-40259	-4.9829	-40191
LUMO+2	-4.8523	-39137	-4.8393	-39032
LUMO+3	-4.0733	-32853	-4.1579	-33536
LUMO+4	-3.8656	-31178	-3.8463	-31023

Table S6 Calculated energies of frontier molecular orbitals computed at the B3LYP level

 $[1]^+$ HOMO – LUMO = 20712 cm⁻¹ $[2]^+$ HOMO – LUMO = 18693 cm⁻¹

Donor dπ	Acceptor ^b π^*	Occupancy of π^*	Delocalisation energy kcal/mole
Ru	N3-N4	0.6449	22.59
Ru	N8–C8	0.4236	5.50
Ru	N9-C17	0.5159	9.31
Ru	N1-C2	0.4257	0.67
Ru	N10-C22	0.5220	5.17

Table S7	Delocalisation energy of back–bonding $(d\pi \text{ to } \pi^*)$ in $[1]^+$	computed at the
	NBO/B3LYP//B3LYP/LanL2DZ ^a	

^{*a*}Los Alamos effective core potential for the Ru core electrons with DZ functions for the valence orbitals with f-polarization and a $6-31G^*$ basis set for all other elements.

^bRefer to X-ray structure[Fig. 1a] for atom numbers.

Donor dπ	$\begin{array}{c} \text{Acceptor}^{b} \\ \pi^{*} \end{array}$	Occupancy of π^*	Delocalisation energy kcal/mole
Ru	N3-C6	0.5593	10.69
Ru	N8–C8	0.4287	4.91
Ru	N9-C17	0.5219	9.08
Ru	N1-C2	0.4465	3.68
Ru	N10-C22	0.4287	4.91

Table S8 Delocalisation energy of back-bonding $(d\pi \text{ to } \pi^*)$ in $[2]^+$ computed at the
NBO/B3LYP//B3LYP/LanL2DZ* ^a

^{*a*}Los Alamos effective core potential for the Ru core electrons with DZ functions for the valence orbitals with f-polarization and a $6-31G^*$ basis set for all other elements.

^bRefer to X–ray structure [Fig. 1b] for atom numbers.

Complex	Energy/a.u.	Difference, kcal/mol (cm ⁻¹)
$\begin{bmatrix} 1 \end{bmatrix}^+$	-1951.8711444	0.00
$[2]^{+}$	-1951.8621541	5.64 (1973)

Table S9 Total energies of complex $[1]^+$ and $[2]^+$

Fig. S1 Orbital contours diagrams of the frontier Kohn–Sham orbitals of $[1]^+$

Fig. S2 Orbital contours diagrams of the frontier Kohn–Sham orbitals of $[2]^+$

