Dative σ - and π -bonding in boron-nitrogen compounds: molecular structures of (CH₃)₂NB(CH₃)N(CH₃)B(CH₃)₂ and (CH₃)₂NN(B(CH₃)₂)₂ determined by gas electron diffraction and quantum chemical calculations

Kari-Anne Østby, Grete Gundersen, and Arne Haaland*

Contents:

Table S1 Cartesian coordinates (in Å) for the open form of Me₂NBMeNMeBMe₂, $Me = CH_3$, (1-o) obtained by structure optimization at the MP2/6-311++G** level.

Table S2 Cartesian coordinates (in Å) for the closed form of Me₂NBMeNMeBMe₂, $Me = CH_3$, (1-c) obtained by structure optimization at the MP2/6-311++G** level.

Table S3 Cartesian coordinates (in Å) for the closed form of $(Me_2B)_2NNMe_2$, Me = CH₃, (**2-c**) obtained by structure optimization at the MP2/6-311++G** level.

Table S4 Cartesian coordinates (in Å) for the open form of $(Me_2B)_2NNMe_2$, Me = CH₃, (**2-o**) obtained by structure optimization at the MP2/6-311++G** level.

Table S5 Experimental and calculated vibrational amplitudes, *l*, for $Me_2NBMeNMeBMe_2$ (**1-0**), obtained by GED and B3PW91/6-311++G** respectively. Amplitudes in pm (estimated standard deviations in parentheses in units of the last digit)

Table S6 Experimental and calculated vibrational amplitudes, *l*, for $(Me_2B)_2NNMe_2$ (**2-c**), obtained by GED and B3PW91/6-311++G**, respectively. Amplitudes in pm (estimated standard deviations in parentheses in units of the last digit)

Figure S1 Experimental (dots) and calculated (lines) intensity curves of

 $Me_2NBMeNMeBMe_2$

(1-o) and $(CH_3)_2NN(B(CH_3)_2)_2$ (2-c).

N1 -1.396002 -0.084594 -0.873801 B2 -0.805981 -0.371322 0.372822 N3 0.435727 0.323864 0.780188 B4 1.680036 0.204912 0.111525 C5 -2.538430-0.811636 -1.403503 C6 -0.935934 0.945764 -1.790621 C7 -1.468927 -1.417868 1.371607 C8 0.381691 0.946117 2.112464 C9 1.831117 -0.620378 -1.235398 C10 2.978259 0.880918 0.737275 H11 -1.593256 -2.853171 -0.714201 H12 -3.382987 -0.132252 -1.575477 H13 -2.282200 -1.278315 -2.363396 H14 -0.178555 1.563231 -1.309953 H15 -0.509074 0.507074 -2.701245 H16 -1.781440 1.580638 -2.083329 H17 2.347247 -0.976607 -1.416415 H18 -2.538762 -1.249090 1.535095 H19 -2.434168 -1.367062 0.969566 H20 -0.653162 1.162902 2.391448 H21 0.813462 0.303005 2.888227 H22 0.928512 1.891727 2.109997 H23 0.931928 -1.137233 -1.578735 H24 2.180024 0.036876 -2.043020 H25 2.624990 -1.366657 -1.102191 H26 2.878408 1.973454 0.778843 H27 3.149026 0.552169 1.770092 0.655960 H28 3.881670 0.163644

Table S1 Cartesian coordinates (in Å) for the open form of Me₂NBMeNMeBMe₂, Me = CH_3 , (1-o) obtained by structure optimization at the MP2/6-311++G** level.

N1	-0.745223	-0.000000	-0.673298
B2	-0.758442	0.000000	0.887835
N3	0.600216	0.000000	1.075122
B4	0.930848	-0.000000	-0.455574
C5	-1.339554	-1.202551	-1.281500
C6	-1.339554	1.202551	-1.281500
C7	-2.045471	0.000000	1.788810
C8	1.469951	0.000000	2.224610
C9	1.633410	1.346707	-0.993204
C10	1.633410	-1.346707	-0.993204
H11	-0.956757	-2.094100	-0.785012
H12	-2.430478	-1.174587	-1.180190
H13	-1.080370	-1.250348	-2.343794
H14	-0.956757	2.094100	-0.785012
H15	-2.430478	.174587	-1.180190
H16	-1.080370	1.250348	-2.343794
H17	-1.797971	0.000000	2.854267
H18	-2.669498	0.880034	1.592331
H19	-2.669498	-0.880034	1.592331
H20	0.892591	0.000000	3.154377
H21	2.115276	-0.885607	2.217086
H22	2.115276	0.885607	2.217086
H23	1.236298	2.268666	-0.551621
H24	2.702899	1.315647	-0.746537
H25	1.575259	1.443673	-2.085659
H26	1.236298	-2.268666	0.551621
H27	2.702899	-1.315647	-0.746537
H28	1.575259	-1.443673	-2.085659

Table S2 Cartesian coordinates (in Å) for the closed form of Me₂NBMeNMeBMe₂, $Me = CH_3$, (**1-c**) obtained by structure optimization at the MP2/6-311++G** level.

N1	-0.040658	0.000000	-0.385175
N2	-0.034949	-0.000000	1.066136
B3	1.358084	0.000000	0.173038
B4	-1.108916	-0.000000	-1.284434
C5	-0.547305	1.220827	1.700560
C6	-0.547305	-1.220827	1.700560
C7	2.202253	-1.356721	0.182840
C8	2.202253	1.356721	0.182840
C9	-0.726362	0.000000	-2.822886
C10	-2.635255	-0.000000	-0.844228
H11	-0.184769	2.083242	1.147542
H12	-1.641022	1.216723	1.701765
H13	-0.177618	1.257911	2.729246
H14	-0.184769	-2.083242	1.147542
H15	-1.641022	-1.216723	1.701765
H16	-0.177618	-1.257911	2.729246
H17	1.612370	-2.271921	0.078707
H18	2.897084	-1.335455	-0.666179
H19	2.822332	-1.446507	1.083907
H20	1.612370	2.271921	0.078707
H21	2.897084	1.335455	-0.666179
H22	2.822332	1.446507	1.083907
H23	0.353273	0.000000	-2.996694
H24	-1.153782	-0.876916	-3.324756
H25	-1.153782	0.876916	-3.324756
H26	-2.826717	-0.000000	0.231109
H27	-3.141006	0.874803	-1.271378
H28	-3.141006	-0.874803	-1.271378

Table S3 Cartesian coordinates (in Å) for the closed form of $(Me_2B)_2NNMe_2$, Me = CH₃, (**2-c**) obtained by structure optimization at the MP2/6-311++G** level.

N1	-0.070528	0.010638	-0.062625
N2	-0.269591	0.066180	1.362607
B3	1.260520	-0.029396	-0.629114
B4	-1.339177	0.041486	-0.778607
C5	-0.131066	-1.230951	1.998469
C6	0.409763	1.169152	2.018122
C7	2.575718	-0.265119	0.224118
C8	1.523416	0.228780	-2.171919
C9	-1.487929	-0.369284	-2.298169
C10	-2.653384	0.418033	0.011367
H11	-0.825992	-1.930116	1.524559
H12	0.878587	-1.664461	1.951097
H13	-0.415711	-1.125528	3.049978
H14	0.179485	2.087327	1.471003
H15	-0.001932	1.262607	3.028189
H16	1.501313	1.073236	2.098589
H17	2.470679	-0.647244	1.237173
H18	3.225504	-0.949450	-0.335721
H19	3.130326	0.681736	0.276941
H20	0.775080	0.833200	-2.684467
H21	2.498424	0.715687	-2.287732
H22	1.600759	-0.727027	-2.706418
H23	-0.685483	-0.974530	-2.717819
H24	-2.431720	-0.915768	-2.410912
H25	-1.593704	0.530757	-2.918826
H26	-2.502207	1.233859	0.722536
H27	-3.480760	0.661020	-0.663051
H28	-2.967633	-0.447146	0.611683

Table S4 Cartesian coordinates (in Å) for the open form of $(Me_2B)_2NNMe_2$, Me = CH₃, (**2-o**) obtained by structure optimization at the MP2/6-311++G** level.

N3^{...}C10

B4^{...}C5

B4...C6

B4...C7

 $B4 \cdot \cdot \cdot C8$

C5^{...}C6

C5...C7

C5^{...}C8

C5^{...}C9

C5...C10

C6^{...}C7

Bond distances *l(calc) l(exp)* N1-B2 $4.25(3)^{a}$ 4.64 $4.65(3)^{a}$ 5.04 N3-B2 $4.34(3)^{a}$ N3-B4 4.73 $4.47(3)^{a}$ 4.86 N1-C5 N1-C6 $4.46(3)^{a}$ 4.86 B2-C7 $5.05(3)^{a}$ 5.45 4.97 N3-C8 $4.57(3)^{a}$ B4-C9 $5.03(3)^{a}$ 5.42 B4-C10 $5.07(3)^{a}$ 5.46 <C-H> 7.53(1) 7.81 Nonbonded distances $7.32(6)^{b}$ N1^{...}N3 6.25 B2^{...}B4 $8.27(6)^{b}$ 7.20 $12.04(6)^{c}$ N1^{...}B4 10.87 $7.84(6)^{b}$ N1^{...}C7 6.77 N1^{...}C8 [11.02] 11.02 N1^{...}C9 16.17 [16.17] N1^{...}C10 [11.94] 11.94 7.51(6)^b B2...C5 6.44 7.57(6)^b B2^{...}C6 6.50 $8.65(6)^{b}$ B2...C8 7.58 B2...C9 $12.86(6)^{c}$ 11.69 B2...C10 $7.34(6)^{d}$ 7.73 $11.03(6)^{c}$ N3^{...}C5 9.86 $6.48(6)^{d}$ N3^{...}C6 6.87 8.18(6)^b N3^{...}C7 7.11 N3^{...}C9 $8.04(6)^{b}$ 6.97

 $8.04(6)^{b}$

[15.60]

[12.65] 13.73(6)^c

 $7.87(6)^{b}$

 $7.92(6)^{b}$

 $6.88(6)^{d}$

[17.30]

[22.24]

[21.05]

 $11.74(6)^{c}$

6.97

15.60

12.65

12.56

6.80

6.84

7.27

17.30

22.24

21.05

10.57

Table S5 Experimental and calculated vibrational amplitudes, *l*, for $Me_2NBMeNMeBMe_2$ (**1-0**), obtained by GED and B3PW91/6-311++G** respectively. Amplitudes in pm (estimated standard deviations in parentheses in units of the last digit)

C6C8	[11.82]	11.82
C6 C9	[21.62]	21.62
C6 C10	[12.48]	12.48
C7 C8	$15.63(6)^{c}$	14.46
C7 C9	[20.67]	20.67
C7 C10	[14.93]	14.93
C8···C9	$7.00(6)^{d}$	7.39
C8C10	$13.00(6)^{c}$	11.83
C9 C10	$8.97(6)^{b}$	7.90

^{a, b, c, d} These *l*-values were refined with a constant difference. Fixed *l*-values in square brackets [].

Bond distances	l(exp)	l(calc)
N1-N2	$4.78(4)^{a}$	5.17
N1-B3	$4.84(4)^{a}$	5.23
N1-B4	$4.21(4)^{a}$	4.61
N2-B3	$7.34(4)^{a}$	7.74
N2-C5	$4.61(4)^{a}$	5.01
B3-C7	$5.17(4)^{a}$	5.57
B4-C9	$5.06(4)^{a}$	5.46
B4-C10	$5.08(4)^{a}$	5.47
<c-h></c-h>	7.58(1)	7.79
Nonbonded distances		
N1…C5	7.39(6) ^b	7.41
N1····C7	$7.91(6)^{b}$	7.92
N1…C9	$7.48(6)^{b}$	7.50
N1…C10	$7.02(6)^{b}$	7.04
N2…B4	$6.66(6)^{b}$	6.68
N2…C7	$8.91(6)^{b}$	8.92
N2…C9	[7.67]	7.67
N2…C10	$11.62(7)^{c}$	11.77
B3…B4	$6.82(6)^{b}$	6.83
B3…C5	$9.35(6)^{b}$	9.36
B3…C9	$13.15(7)^{c}$	13.29
B3…C10	[8.26]	8.26
B4…C5	$15.09(7)^{c}$	15.23
B4…C7	[16.20]	16.20
C5…C6	$7.12(6)^{b}$	7.14
C5…C7	[10.32]	10.32
C5…C8	$13.80(7)^{\circ}$	13.94
C5…C9	[15.42]	15.42
C5…C10	$\overline{27.28(7)}^{c}$	27.42
C7…C8	$8.31(6)^{b}$	8.33
C7…C9	[23.07]	23.07
C7…C10	[21.88]	21.88
C9…C10	$8.24(6)^{b}$	8.26

Table S6 Experimental and calculated vibrational amplitudes, *l*, for $(Me_2B)_2NNMe_2$ (**2-c**), obtained by GED and B3PW91/6-311++G**, respectively. Amplitudes in pm (estimated standard deviations in parentheses in units of the last digit)

^{a, b, c,} These *l*-values were refined with a constant difference.

Fixed *l*-values in square brackets.

Figure S1 Experimental (dots) and calculated (lines) intensity curves of Me₂NBMeNMeBMe₂ (**1-0**) and Me₂NN(BMe₂)₂ (**2-c**).