Supplementary information

for the manuscript

Synthesis, structure, spectroscopy and redox chemistry of square-planar nickel(II) complexes with tetradentate *o*-phenylenedioxamidates and related ligands

Xavier Ottenwaelder, Ally Aukauloo, Yves Journaux,* Rosa Carrasco, Joan Cano, Beatriz Cervera, Isabel Castro, S. Curreli, M. Carmen Muñoz, Antonio L. Roselló, Bernardino Soto and Rafael Ruiz-García*

Complex	NMe	<i>m</i> -H	<i>о</i> -Н
4 5 6	2.51 (6H, s) 2.50 (3H, s)	6.56 (2H, dd) (5.9, 3.5) 6.61 (2H, dd) (5.9, 3.5) 6.65 (2H, dd) (5.8, 3.4)	8.03 (2H, dd) (6.0, 3.5) 7.91 (2H, dd) (6.0, 3.5) 7.90 (2H, dd) (6.0, 3.5)

Table S1 Proton NMR spectroscopic data for $4-6^{a,b}$

^{*a*} δ (ppm) values in acetonitrile. *J* (Hz) values are given in parentheses. ^{*b*} Other signals from Me₄N⁺ countercations at 3.10 (24 H, s).

Complex	$\lambda_{\rm max}/{\rm nm}~(\epsilon/{\rm M}^{-1}~{\rm cm}^{-1})$
4 5 6	256 (23000), 317 (sh), 357 (6500), 410 (sh) 254 (23000), 309 (sh), 352 (5500), 380 (sh), 410 (sh) 250 (23000), 274 (sh), 350 (7200), 465 (240)
^{<i>a</i>} In acetonitrile.	

Table S2 Electronic absorption spectroscopic data for $4-6^a$

Table S3 X-Ray	y absorption	spectroscop	pic data for	4 and nickel(II) sulfate ac	jueous solution ^{<i>a,b</i>}
----------------	--------------	-------------	--------------	-----------------	--------------	---------------------------------------

Complex	Preedge	Edge
4 $[Ni(H_2O)_6]^{2+}$	8331.6 (0.04) (sh) 8331.5 (0.03)	8339.2 (0.4) (sh), 8346.4 (0.7) (sh), 8351.5 (1.3), 8352.7 (1.3) 8348.6 (1.3)

^{*a*} E (eV) values. Normalized absorbance values (relative to the atomic absorption) are given in parentheses. ^{*b*} Structure-contributing peaks on and above the broad absorption band of the rising edge have been precisely located from the absorption spectrum and its second derivative.

Table S4 X-Ray absorption structural data for 4^{a}

	N^b	R^c /Å	σ^d /Å	Γ^{e}	E_0^f/eV	
Ni–N(arylamidate)	2.0	1.85(2)	0.03	1.7	8331.0	
Ni-N(alkylamidate)	2.0	1.93(2)	0.04	1.7	8331.0	

^{*a*} The fit was done using the theoretical amplitudes and phases of McKale (A. G. McKale, B. W. Veal and A. P. Paulikas, *J. Am. Chem. Soc.*, 1988, **110**, 3763). The residual factor defined as $\Sigma(k\chi_{exp} - k\chi_{th})^2 / \Sigma \chi_{exp}^2$ was 8.7 x 10⁻³. ^{*b*} The number of neighboring atoms *N* was allowed to vary during the fitting procedure. ^{*c*} *R* is the distance from the nickel absorber. Estimated errors are given in parentheses. ^{*d*} σ is the Debye-Waller coefficient. ^{*e*} The mean-electron-free path λ was chosen as $\lambda(k) = (1/\Gamma)[(\eta/k)^4 + k]$ with $\eta = 3.1$, and Γ was allowed to vary during the fitting procedure. ^{*f*} E_0 is the ionization energy.

Complex	g_x	g_y	<i>8z</i>
$[NiL^1]^-$	2.006	2.080	2.193
	(2.006) ^c	$(2.081)^c$	$(2.192)^c$
[NiL ²] ⁻	2.290	2.290	2.000
[NiL ³] ⁻	2.265	2.265	2.003

Table S5 X-band EPR spectroscopic data for the singly oxidized species of $7-9^{a,b}$

^{*a*} Best fit *g* values corresponding to the *x*, *y* and *z* components of the allowed $M_s = +1/2 \rightarrow M_s = -1/2$ transition. ^{*b*} In acetonitrile at 110 K. ^{*c*} In dichloromethane at 110 K.