Table. Absorption spectral bandwidth (w ^a , cm ⁻¹) and oscillator strengths (f) of zinc porphyrins in CH	ngths (f) of zinc porphyrins in CH ₂ Cl ₂
---	---

	B band	Q_1 band	Q_2 band
compound	w f	wf	wf
ZnTPP	667 1.30	590 0.0616	524 0.0066
ZnTAPP ^c	933 1.70	680 0.0647	625 0.0508
ZnTDPAPP	1905 1.51	695 0.0699	714 0.0476
ZnTDTAPP	3009 1.69	733 0.0714	790 0.0623

a. Taken as the spectral width of the B band and Q band region at the half of the height.

b. f is the oscillator strength which is calculated using the equation:

 $f = 4.319 \times 0^{-9}$ A/n, where A is the integrated absorption band (plotted as $\varepsilon vs.$ cm⁻¹) and n is the solvent refractive index (1.42 for CH₂Cl₂)

c. In acetone (n = 1.36).

E / V (vs. Ag / AgCl)

Fig. Differential pulse voltammograms of 1×10^{-3} M H₂TDPAPP in CH₂Cl₂ containing 0.1 M TBAP. Init. E : 1.0 V, Final E : -1.37 V, Incr. E : 0.004 V, Amplitude : 0.05 V, Pulse Width : 0.05 s, Sampling Width : 0.0167 s, Pulse Period : 0.1 s.

Synthesis of H₂TDPAPP

A 1 L three-neck round-bottomed flask fitted with a septum, reflux condenser, and nitrogen inlet port was charged with 500 mL of CHC1₃ (distilled from K_2CO_3), 4-diphenylaminobenzaldehyde (1.367 g, 5 mmol), and pyrrole (0.35 mL, 5 mmol). After the solution was purged with N₂ for 5 min, BF₃ 0Et₂ (0.43 mL, 1.06 mmol) was added via syringe. The

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

room temperature reaction was monitored with UV/Vis spectrometry and oxidizing with excess DDQ, followed by absorption spectrophotometry. At the end of 1 h, triethylamine (0.23 mL, 1.65 mmol) was added, and the solution was rotary evaporated to dryness. The crude dry product was scraped from the flask, placed on a filter, and washed with methanol (200 mL) until the filtrate was clear. The poly-pyrromethenes and quinone components are highly soluble in methanol and are removed with ease. The final product was purple solid and recrystallized by CH_2Cl_2 and hexane. (0.32g, yield 25%).

UV-Vis (in CH₂Cl₂, λ_{max}): 438 (soret), 524, 569 and 656 nm. ¹H NMR (in CDCl₃, δ , ppm) 9.00 (s, 8H, pyrrole-H, H_b), 8.08 (d, J = 7.8 Hz, 8H, H_c), 7.42~7.46 (m, 40H, H_e), 7.15 (d, J = 7.6 Hz, 8H, H_d), -2.68 (s, 2H, NH, H_a). Calcd. for C₉₂H₆₆N₈ (1283.54): C, 86.09; H, 5.18; N, 8.73. Found: C, 85.65; H, 5.16; N, 8.36.

Synthesis of H₂TDTAPP

To a 250 mL round bottomed flask containing 129 mL of CHCl₃ equipped with a mechanical stirrer, nitrogen gas was purged for 5 min. To this 4-(di-p-tolylamino)benzaldehyde (0.39 g, 1.29 mmol) and pyrrole (0.09 mL, 1.29 mmol) were

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

added. After 5 min the reaction mixture was treated with BF_3 . $OEt_2(0.11 \text{ mL}, 0.87 \text{ mmol})$. The nitrogen atmosphere was removed and stirring continued for 1 h. The resulting solution was treated with triethylamine (0.59 mL, 4.19 mmol). The solvent was removed by rotary evaporation. The product was subjected to further purification by methanol washing and finally by column chromatography (basic alumina, CHCl₃). Yield (80 mg, 10 %).

UV-Vis (in CHCl₃, λ_{max}): 408 (sh), 444 (Soret), 525, 575 and 664 nm. ¹H NMR(CDCl₃, δ , ppm) 2.40 (s, 24 H, CH₃, H_g), 8.04 (d, J = 7.8 Hz, 8H, H_c), 7.40 (d, J = 8.1 Hz, 8H, H_d), 7.31 (d, J = 9.0 Hz, 16 H, H_f), 7.22 (d, J = 8.0 Hz, 16 H, H_e), 8.99 (s, 8H, pyrrole-H, H_b), -2.66 (s, 2H, NH, H_a). Calcd. for C₁₀₄H₉₈N₈: C, 85.56; H, 6.77; N, 7.68. Found: C, 85.69, H, 6.30; N, 7.86.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

a graphical content

In this study, electrochemical and spectral properties of porphine free bases linked with four *meso*-triphenylamine moieties and the corresponding zinc complexes are first reported. The TPA substituents slightly interact with the porphine cores revealed by the absorption spectra, fluorescence spectra and cyclic voltammograms. Intramolecular energy transfer occurs when the zinc porphyrins were excited at the wavelength where the TPA moieties absorbed. Electrooxidative polymerization of porphine-TPA conjugative systems is also found. The abundant spectral and electrochemical properties make the new hybrid system a new candidate for photosynthesis and catalysis.