Structural and zeolitic features of a series of heterometallic supramolecular porous architectures based on tetrahedral $\{M(C_2O_4)_4\}^{4-}$ primary building units.

Inhar Imaz,^a Georges Bravic^a and Jean-Pascal Sutter^{a,b}*

^a Institut de Chimie de la Matière Condensée de Bordeaux – CNRS, Université Bordeaux 1,
87 Avenue du Dr. Schweitzer, F-33608 Pessac (France).
^b Laboratoire de Chimie de Coordination du CNRS, Université Toulouse 3, 205 Route de Narbonne,
F-31077 Toulouse (France)

* e-mail: sutter@lcc-toulouse.fr

Supplementary Information

Figure SI1. Themogravimetric analysis for [K₂MnU(C₂O₄)₄];9H₂O, SPA-1.

Figure SI2. Themogravimetric analysis for [K₂CdU(C₂O₄)₄];9H₂O, SPA-2.

Figure SI3. Temperature dependences of the X-ray powder diffractograms recorded for $[K_2MnU(C_2O_4)_4]$;9H₂O, **SPA-1** and $[K_2Mg_2U_2(C_2O_4)_7]$;11H₂O, **SPA-3**.

Figure SI4. Themogravimetric analysis for EtOH@SPA-3.

Table SI1. Atomic coordinates and equivalent isotropic and anisotropic displacement parameters for $[K_2CdU(C_2O_4)_4]$;9H₂O, **SPA-2**.

Figure SI4. ORTEP plot (30% probability level) for the assymetric unit of [K₂CdU(C₂O₄)₄];9H₂O, **SPA-2**.

Table SI2. Bond lengths in Å for $[K_2CdU(C_2O_4)_4]$;9H₂O, **SPA-2**.

Table SI3. Angles in ° for $[K_2CdU(C_2O_4)_4]$;9H₂O, **SPA-2**.

Table SI4. Atomic coordinates, equivalent isotropic and anisotropic displacement parameters for $[K_2Mg_2U_2(C_2O_4)_7]$;11H₂O, **SPA-3**.

Figure SI5. ORTEP plot (30% probability level) for the assymetric unit of $[K_2Mg_2U_2(C_2O_4)_7]$;11H₂O, **SPA-3**.

Table SI5. Distances in Å for $[K_2Mg_2U_2(C_2O_4)_7]$;11H₂O, **SPA-3**.

Table SI6. Angles in ° for $[K_2Mg_2U_2(C_2O_4)_7]$;11H₂O, **SPA-3**.

Table SI7. Atomic coordinates equivalent isotropic and anisotropic displacement parameters for $[K_2ZrMn(C_2O_4)_4]$;8H2O, **SPA-4**.

Figure SI6. ORTEP plot (30% probability level) for the assymetric unit of $[K_2Mn\{Zr (C_2O_4)_4\}]$;8H₂O, SPA-4.

Table SI8. Distances in Å for $[K_2ZrMn(C_2O_4)_4]$;7H₂O, **SPA-4**.

Table SI9. Angles in ° for $[K_2ZrMn(C_2O_4)_4]$;7H₂O, **SPA-4**.

Figure SI1. Themogravimetric analysis for [K₂MnU(C₂O₄)₄];9H₂O, SPA-1.

Figure SI3. Temperature dependences of the X-ray powder diffractograms recorded for: a) [K₂MnU(C₂O₄)₄];9H₂O, SPA-1. (*Pt and *Al mark the picks due to the sample holder)

b) $[K_2Mg_2U_2(C_2O_4)_7];11H_2O,$ **SPA-3**.

Figure SI4. Themogravimetric analysis for EtOH@SPA-3.

Table SI1(a). Atomic coordinates and equivalent isotropic displacement parameters for $[K_2CdU(C_2O_4)_4]$;9H₂O, **SPA-2**.

Atom	Х	У	Z	U(eq) [Ang^2]
TT1	0 28702(1)	0 76383(1)	0 28280(1)	0 0088(1)
Cd1	0.20702(1) 0.77568(4)	1 01890(4)	0.20200(1) 0.22672(4)	0.0000(1) 0.0115(1)
K1	0.26564(13)	0.2708(3)	0.22072(4) 0.26944(13)	0.0110(1) 0.0279(4)
к2	0.20304(15) 0.77802(16)	0.2700(3) 0.5195(3)	0.20944(10) 0.21895(16)	0.0273(4) 0.0283(4)
01	0.5747(4)	1.0839(5)	0.2383(4)	0.0207(12)
02	0.6509(4)	0.8028(5)	0.1972(4)	0.0213(14)
03	0.4683(4)	0.7201(5)	0.2048(4)	0.0195(12)
04	0.4023(4)	0.9858(5)	0.2722(4)	0.0181(11)
05	0.2406(4)	0.4551(5)	0.5757(4)	0.0222(14)
06	0.2154(4)	0.7405(5)	0.6517(4)	0.0199(13)
07	0.2617(4)	0.5462(5)	0.3991(4)	0.0184(11)
08	0.2380(4)	0.8219(5)	0.4727(4)	0.0164(11)
09	-0.1051(4)	0.7942(5)	0.2407(5)	0.0251(15)
010	-0.0219(4)	1.0760(5)	0.2496(4)	0.0203(14)
011	0.0810(4)	0.7102(5)	0.2541(4)	0.0197(13)
012	0.1612(4)	0.9850(5)	0.2651(4)	0.0155(11)
013	0.2398(4)	0.4596(5)	-0.0263(4)	0.0235(14)
014	0.2191(4)	0.7428(6)	-0.1063(4)	0.0226(13)
015	0.2695(4)	0.5493(5)	0.1567(4)	0.0158(11)
016	0.2398(4)	0.8235(5)	0.0792(4)	0.0204(11)
010	0.4053(4) 0.0534(6)	0.7420(7)	0.4390(4) 0.1150(7)	0.0291(10)
019	0.0334(6)	0.3139(0) 0.2290(7)	0.1139(7)	0.037(2)
020	0.5055(0)	0.2290(7) 0.3474(7)	0.0000(5) 0.3378(5)	0.049(2) 0.0387(17)
021	0.5532(6)	0.3474(7) 0.4762(8)	0.03370(3) 0.0835(7)	0.0307(17) 0.051(2)
023	0.9767(5)	0.5115(8)	0.4020(7)	0.050(2)
024	0.9033(6)	0.5572(7)	0.0257(5)	0.0460(19)
025	0.6877(5)	0.6168(7)	0.4366(6)	0.0458(19)
C1	0.5060(5)	0.9788(7)	0.2443(5)	0.0149(16)
C2	0.5469(5)	0.8215(7)	0.2119(5)	0.0141(16)
C3	0.2455(5)	0.5581(7)	0.5057(5)	0.0143(16)
C4	0.2310(5)	0.7209(6)	0.5498(5)	0.0118(14)
C5	0.0504(5)	0.9724(6)	0.2538(5)	0.0134(16)
C6	0.0026(5)	0.8122(6)	0.2480(5)	0.0134(16)
C'7	0.2346(5)	0.7231(6)	0.0009(5)	0.0132(16)
C8	0.2484(5)	0.5627(6)	0.0464(5)	0.0129(16)
U18 U177	0.0807(6)	0.2346(7)	0.4457(6)	0.051(2)
ні /д ці 7в	0.33230	0.71290	0.40500	0.0130
н19д	0.00260	0.000010	0.11910	0.0130
H19C	0.01420	0.40400	0.13940	0.0130
H20B	0.45150	0.29300	0.07430	0.0130
H20C	0.33130	0.25510	-0.00070	0.0130
H21B	0.51070	0.43880	0.38130	0.0130
H21C	0.54480	0.35990	0.26920	0.0130
H22A	0.50540	0.56200	0.09240	0.0130
H22C	0.56440	0.46570	0.00260	0.0130
H23A	0.98110	0.60360	0.44410	0.0130
H23B	1.04770	0.49720	0.36710	0.0130
H24A	0.92820	0.65970	0.02270	0.0130
H24B	0.85230	0.53430	-0.04510	0.0130
H25A	0.70260	0.72160	0.44810	0.0130
HZ5B	0.72770	0.56240	0.50180	U.UI30
ПТОР ПТОР	0.00320	U.2493U 0 30740	0.40520	U.UI3U 0 0120
11100	0.09000	0.30/40	0.00/00	0.0130

Table SI1(b). Anisotropic displacement parameters (A² x 10³) for $K_2CdU(C_2O_4)_4$];9H₂O, **SPA-2**. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

Atom	U(1,1)	or U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
U1	0.0084(1)	0.0101(1)	0.0081(1)	-0.0002(1)	0.0022(1)	-0.0002(1)
Cd1	0.0109(2)	0.0135(2)	0.0104(2)	-0.0005(2)	0.0022(2)	-0.0006(2)
К1	0.0313(6)	0.0166(7)	0.0356(7)	0.0014(9)	0.0038(5)	-0.0028(10)
К2	0.0313(8)	0.0201(7)	0.0330(8)	-0.0035(8)	0.0026(7)	-0.0014(7)
01	0.012(2)	0.017(2)	0.033(2)	-0.0002(19)	0.0029(18)	-0.0026(16)
02	0.0128(19)	0.023(3)	0.029(2)	-0.0048(17)	0.0061(16)	-0.0005(15)
03	0.016(2)	0.015(2)	0.029(2)	-0.0092(16)	0.0091(17)	-0.0052(15)
04	0.0125(19)	0.015(2)	0.028(2)	-0.0006(17)	0.0075(17)	-0.0003(16)
05	0.036(3)	0.018(2)	0.012(2)	0.0021(17)	0.0010(18)	-0.0049(19)
06	0.028(2)	0.019(3)	0.0136(17)	-0.0023(17)	0.0067(16)	0.0039(18)
07	0.029(2)	0.014(2)	0.0124(19)	-0.0010(16)	0.0037(17)	-0.0009(17)
08	0.024(2)	0.0146(19)	0.012(2)	-0.0007(15)	0.0072(16)	0.0029(16)
09	0.0119(19)	0.017(3)	0.046(3)	-0.002(2)	0.0027(18)	-0.0031(16)
010	0.013(2)	0.014(2)	0.034(3)	0.0004(18)	0.0031(18)	0.0030(16)
011	0.009(2)	0.0126(18)	0.037(3)	-0.0015(18)	0.0015(17)	0.0016(15)
012	0.0096(18)	0.012(2)	0.025(2)	0.0017(16)	0.0029(16)	-0.0015(15)
013	0.039(3)	0.016(2)	0.015(2)	-0.0017(17)	0.0013(19)	0.0018(19)
014	0.041(2)	0.016(3)	0.0101(17)	0.0036(18)	0.0005(17)	0.000(2)
015	0.025(2)	0.013(2)	0.0094(18)	0.0003(15)	0.0025(16)	-0.0002(16)
016	0.030(2)	0.0163(19)	0.014(2)	-0.0007(16)	0.0000(17)	0.0050(17)
017	0.018(2)	0.045(4)	0.023(2)	0.003(2)	-0.0021(17)	0.004(2)
019	0.039(3)	0.047(4)	0.085(5)	0.021(3)	0.013(3)	-0.012(3)
020	0.063(4)	0.044(4)	0.037(3)	0.007(3)	-0.007(3)	0.020(3)
021	0.033(3)	0.050(3)	0.032(3)	-0.008(3)	0.000(2)	0.005(3)
022	0.044(3)	0.043(4)	0.069(4)	-0.018(3)	0.017(3)	0.004(3)
023	0.036(3)	0.038(3)	0.077(5)	0.018(3)	0.012(3)	-0.001(3)
024	0.060(4)	0.042(3)	0.033(3)	-0.001(2)	-0.005(3)	-0.019(3)
025	0.038(3)	0.043(3)	0.057(4)	0.015(3)	0.009(3)	0.009(3)
C1	0.009(2)	0.018(3)	0.018(3)	0.002(2)	0.003(2)	-0.003(2)
C2	0.007(2)	0.022(3)	0.014(3)	-0.003(2)	0.004(2)	-0.003(2)
С3	0.014(3)	0.018(3)	0.011(2)	0.003(2)	0.002(2)	-0.005(2)
C4	0.011(2)	0.015(3)	0.009(2)	0.0008(19)	-0.0002(19)	0.0010(18)
С5	0.013(2)	0.015(3)	0.013(3)	0.000(2)	0.005(2)	0.001(2)
C6	0.008(2)	0.014(3)	0.018(3)	-0.0022(19)	0.001(2)	0.0000(19)
C7	0.016(3)	0.015(3)	0.008(2)	0.0003(19)	-0.001(2)	-0.0007(19)
C8	0.011(2)	0.015(3)	0.013(3)	0.000(2)	0.003(2)	0.001(2)
018	0.062(4)	0.027(4)	0.058(4)	-0.013(3)	-0.013(3)	0.002(3)

Figure SI4. ORTEP plot (30% probability level) for the assymetric unit of $[K_2CdU(C_2O_4)_4]$;9H₂O, **SPA-2**.

Table SI2. Bond lengths in Å for $[K_2CdU(C_2O_4)_4]$;9H₂O, **SPA-2**.

U1	-03	2.402(5)	K2	-025	2.966(7)
U1	-04	2.402(5)	K2	-09 d	2.801(5)
U1	-07	2.406(5)	K2	-014 e	2.803(6)
U1	-08	2.386(5)	K2	-06 f	2.908(5)
U1	-011	2.393(5)	01	-C1	1.236(8)
U1	-012	2.446(5)	02	-C2	1.238(7)
U1	-015	2.404(5)	03	-C2	1.276(8)
U1	-016	2.399(5)	04	-C1	1.274(7)
U1	-017	2.552(5)	05	-C3	1.232(8)
Cd1	-01	2.399(5)	06	-C4	1.223(7)
Cd1	-02	2.407(5)	07	-C3	1.271(7)
Cd1	-09 d	2.429(5)	08	-C4	1.279(7)
Cd1	-010 d	2.359(5)	09	-C6	1.238(7)
Cd1	-013 ⁻ g	2.354(5)	010	-C5	1.242(7)
Cd1	-014 g	2.446(5)	011	-C6	1.278(7)
Cd1	-05 h	2.378(5)	012	-C5	1.266(7)
Cd1	-06 ^h	2.426(5)	013	-C8	1.243(7)
K1	-07	2.890(5)	014	-C7	1.238(7)
K1	-015	2.818(5)	015	-C8	1.269(7)
K1	-019	2.848(8)	016	-C7	1.271(7)
K1	-020	2.857(6)	017	-H17A	0.9578
K1	-021	2.852(6)	017	-H17B	0.9579
K1	-04_b	2.997(5)	019	-H19C	0.9651
K1	-012_b	2.827(5)	019	-H19A	0.9589
K2	-02	2.924(5)	020	-H20B	0.9655
K2	-022	2.863(8)	020	-H20C	0.9567
K2	-023	2.900(7)	021	-H21B	0.9587
K2	-024	2.823(6)	021	-H21C	0.9627
022	-H22C	0.9620	025	-H25B	0.9612
022	-H22A	0.9581	018	-H18C	0.9613
023	-H23B	0.9625	018	-H18B	0.9584
023	-H23A	0.9559	C1	-C2	1.548(9)
024	-H24B	0.9627	C3	-C4	1.562(8)
024	-H24A	0.9645	C5	-C6	1.536(8)
025	-H25A	0.9614	C7	-C8	1.532(8)

Table SI3. Angles in ° for $[K_2CdU(C_2O_4)_4]$;9H₂O, SPA-2.

03	-U1	-04	66.87(15)	011	-U1	-016	79.37(16)
03	-01	-07	104.40(15)	011	-01	-01/	140.31(16)
03	-01	-08	134.18(16)	012	-01	-015	126.61(15)
03	-01	-011	143.42(15)	012	-01	-016	/1.42(15)
03	-01	-012	129.15(15)	012	-U1	-01'/	122.12(17)
03	-U1	-015	69.63(15)	015	-U1	-016	66.21(15)
03	-U1	-016	76.55(16)	015	-U1	-017	111.21(17)
03	-U1	-017	66.27(15)	016	-U1	-017	140.00(15)
04	-U1	-07	143.85(15)	01	-Cdl	-02	69.22(15)
04	-U1	-08	93.58(15)	01	-Cdl	-09_d	137.31(15)
04	-U1	-011	134.44(15)	01	-Cdl	-010_d	151.69(15)
04	-U1	-012	69.31(15)	01	-Cdl	-013_g	99.11(16)
04	-U1	-015	129.51(15)	01	-Cdl	-014_g	85.78(15)
04	-U1	-016	79.72(15)	01	-Cdl	-05_h	79.05(16)
04	-U1	-017	72.72(17)	01	-Cdl	-06_h	74.80(15)
07	-U1	-08	66.83(15)	02	-Cdl	-09_d	70.18(15)
07	-U1	-011	74.08(15)	02	-Cdl	-010_d	138.53(16)
07	-U1	-012	126.28(15)	02	-Cdl	-013_g	73.23(16)
07	-U1	-015	71.39(15)	02	-Cdl	-014_g	129.68(16)
07	-U1	-016	134.21(15)	02	-Cdl	-05_h	79.79(15)
07	-U1	-017	71.84(17)	02	-Cdl	-06_h	136.13(16)
08	-U1	-011	79.91(16)	09_d	-Cdl	-010_d	68.59(15)
08	-U1	-012	72.12(15)	09 ⁻ d	-Cdl	-013 g	81.26(17)
08	-U1	-015	135.88(15)	09 ⁻ d	-Cdl	-014 g	131.59(17)
08	-U1	-016	142.94(15)	05 h	-Cd1	-09 d	81.39(17)
08	-U1	-017	68.43(15)	06 h	-Cd1	-09 ⁻ d	131.29(17)
011	-U1	-012	65.78(15)	010 d	-Cd1	-01 3 g	96.14(16)
011	-U1	-015	75.62(15)	010 ⁻ d	-Cd1	-014 g	77.83(15)
05 h	-Cd1	-010 d	98.24(16)	04 b	-K1	-012 ^b	56.42(14)
06 h	-Cd1	-010 ⁻ d	77.90(16)	02	-K2	-022	70.55(18)
013 g	-Cd1	-014 g	68.48(16)	02	-K2	-023	114.86(19)
05 h	-Cd1	-013 g	151.59(16)	02	-K2	-024	97.33(17)
06 h	-Cd1	-013 g	138.06(15)	02	-K2	-025	65.92(16)
05 h	-Cd1	-014 g	138.71(16)	02	-K2	-09 d	58.07(14)
06 h	-Cd1	-014 g	69.69(16)	02	-K2	-014 e	139.93(15)
05 h	-Cd1	-06 h	69.32(15)	02	-K2	-06 f	140.44(14)
07	-K1	-015	58.88(14)	022	-K2	-023	164.0(2)
07	-K1	-019	97.50(19)	022	-K2	-024	95.8(2)
07	-K1	-020	124.95(18)	022	-K2	-025	96.5(2)
07	-K1	-021	74.37(16)	09 d	-K2	-022	123.7(2)
04_b	-K1	-07	140.05(14)	014_e	-K2	-022	72.01(18)
07	-K1	-012_b	138.51(14)	06_f	-K2	-022	97.16(19)
015	-K1	-019	69.57(18)	023	-K2	-024	98.3(2)
015	-K1	-020	72.81(16)	023	-K2	-025	73.73(19)
015	-K1	-021	80.89(17)	09_d	-K2	-023	68.55(18)
04_b	-K1	-015	136.17(14)	014_e	-K2	-023	105.06(19)
012 b	-K1	-015	145.81(14)	06 f	-K2	-023	68.90(17)
019	-K1	-020	88.3(2)	024	-K2	-025	154.3(2)
019	-K1	-021	148.9(2)	09 d	-K2	-024	71.24(18)
04_b	-K1	-019	122.14(19)	014_e	-K2	-024	72.72(17)
012_b	-K1	-019	77.96(18)	06_f	-K2	-024	121.69(18)
020	-K1	-021	73.41(18)	09_d	-K2	-025	83.17(17)
04 b	-K1	-020	66.12(16)	014 e	-K2	-025	132.72(18)
012 b	-K1	-020	96.34(17)	06_f	-K2	-025	78.96(16)
04_b	-K1	-021	73.54(16)	09_d	-K2	-014_e	141.82(16)
012_b	-K1	-021	128.00(18)	06_f	-K2	-09_d	136.93(16)

06_f	-K2	-014_e	58.31(14)	Cd1_e	-014	-K2_g	117.48(18)
Cd1	-01	-C1	116.3(4)	U1	-015	-K1	115.83(18)
Cd1	-02	-K2	113.98(17)	U1	-015	-C8	121.3(4)
Cd1	-02	-C2	116.0(4)	K1	-015	-C8	122.3(4)
К2	-02	-C2	125.8(4)	U1	-016	-C7	121.4(4)
U1	-03	-C2	119.9(4)	U1	-017	-H17B	109.37
U1	-04	-C1	120.7(4)	H17A	-017	-H17B	109.94
U1	-04	-K1_c	114.62(17)	U1	-017	-H17A	109.40
K1_c	-04	-C1	123.0(4)	H19A	-019	-H19C	109.13
Cd1_f	-05	-C3	117.5(4)	K1	-019	-H19A	109.82
Cd1_f	-06	-C4	115.9(4)	K1	-019	-H19C	109.51
K2_h	-06	-C4	128.2(4)	H20B	-020	-H20C	109.23
Cd1_f	-06	-K2_h	114.35(17)	K1	-020	-H20C	109.31
U1	-07	-K1	113.21(17)	К1	-020	-H20B	108.93
U1	-07	-C3	120.9(4)	К1	-021	-H21B	109.71
К1	-07	-C3	125.9(4)	К1	-021	-H21C	109.54
U1	-08	-C4	121.7(4)	H21B	-021	-H21C	109.22
Cd1_a	-09	-C6	116.4(4)	К2	-022	-H22A	108.69
K2_a	-09	-C6	125.7(4)	К2	-022	-H22C	108.53
Cd1_a	-09	-K2_a	117.70(18)	H22A	-022	-H22C	109.42
Cd1_a	-010	-C5	119.0(4)	К2	-023	-H23A	109.44
U1	-011	-C6	122.6(4)	К2	-023	-Н23В	109.12
U1	-012	-C5	120.7(4)	H23A	-023	-H23B	109.58
U1	-012	-K1_c	119.31(18)	К2	-024	-H24A	109.02
K1_c	-012	-C5	120.0(4)	К2	-024	-H24B	109.11
Cd1_e	-013	-C8	118.9(4)	H24A	-024	-H24B	108.86
Cd1_e	-014	-C7	116.0(4)	H25A	-025	-H25B	109.27
K2_g	-014	-C7	125.4(4)	К2	-025	-H25A	109.20
K2	-025	-Н25В	109.15	06	-C4	-08	126.6(5)
H18B	-018	-H18C	109.52	010	-C5	-C6	117.7(5)
04	-C1	-C2	115.4(5)	012	-C5	-C6	115.9(5)
01	-C1	-C2	117.8(5)	010	-C5	-012	126.4(5)
01	-C1	-04	126.9(6)	011	-C6	-C5	115.0(5)
02	-C2	-C1	119.0(5)	09	-C6	-C5	118.2(5)
02	-C2	-03	125.5(6)	09	-C6	-011	126.8(5)
03	-C2	-C1	115.6(5)	016	-C7	-C8	115.4(5)
05	-C3	-C4	118.2(5)	014	-C7	-C8	118.1(5)
05	-C3	-07	126.5(6)	014	-C7	-016	126.5(5)
07	-C3	-C4	115.4(5)	013	-C8	-015	126.4(5)
06	-C4	-C3	118.8(5)	013	-C8	-C7	118.2(5)
08	-C4	-C3	114.7(5)	015	-C8	-C7	115.5(5)

Table SI4 (a). Atomic coordinates (x 10⁴) and equivalent isotropic and anisotropic displacement parameters (Å²x 10²) for [K₂Mg₂U₂(C₂O₄)₇];11H₂O, **SPA-3**.

Atom	X	У	Z	U(eq) [Ang^2]
U1	0.80529(1)	0.24889(1)	0.21096(1)	0.0144(1)
K1	0.78770(11)	0	0.43504(13)	0.0321(5)
K2	0.93868(9)	0	0.59105(14)	0.0308(5)
Mg1	0.57814(15)	0.2090(3)	0.4333(3)	0.0549(10)
01	0.9227(2)	0.2238(4)	0.2104(3)	0.0265(11)
02	0.8526(2)	0.1387(4)	0.3299(3)	0.0306(14)
03	0.9409(3)	0.1165(8)	0.4288(5)	0.067(3)
04	1.0148(2)	0.1617(6)	0.2827(4)	0.0512(18)
05'	0.7128(2)	0.2751(4)	0.2998(3)	0.0244(10)
06	0.8287(2)	0.3455(4)	0.3480(3)	0.0326(14)
07	0.6701(2)	0.3668(4)	0.4109(4)	0.0372(16)
08	0.8012(3)	0.3744(5)	0.4912(3)	0.0429(16)
09	0.8320(2)	0.0871(3)	0.1247(3)	0.0279(11)
010	0.7389(2)	0.0869(3)	0.2412(3)	0.0245(10)
011	0.8735(2)	0.4125(3)	0.1901(3)	0.0264(10)
012	0.7433(2)	0.4132(3)	0.1694(3)	0.0264(10)
013	0.7101(2)	0.2203(4)	0.0979(3)	0.0241(10)
014	0.6726(2)	0.2162(4)	-0.0498(3)	0.0235(10)
032	0.4613(4)	0.1076(7)	0.3970(11)	0.120(6)
C1	0.9552(3)	0.1778(5)	0.2761(4)	0.0284(16)
C2	0.9141(3)	0.1404(6)	0.3525(4)	0.0324(17)
C3	0.7880(3)	0.3528(5)	0.4095(4)	0.0257(14)
C4	0.7166(3)	0.3309(4)	0.3717(4)	0.0231(12)
C5	0.8119(4)	0	0.1487(5)	0.0200(17)
C6	0.7580(3)	0	0.2158(5)	0.0190(17)
C'/	0.8460(4)	1/2	0.1863(5)	0.0194(17)
C8	0.7708(4)	1/2	0.1739(5)	0.0204(17)
C9	0.7160(3)	0.2317(4)	0.0138(3)	0.0178(11)
030	0.88900(17)	0.1568(4)	0.8317(3)	0.0287(12)
031	0.8939(8)	0.366(2)	0.756(2)	0.35(2)
033	0.9338(3)	0.1243(9)	0.00/4(5)	0.076(3)
034	0.9603(4)	0.3634(9)	0.0614(7)	0.097(4)
035	0.88300	1/2	0.96310) 0.29(3)
HJZA	0.46/80	0.03480	0.40710	0.1800
HJZC	0.43080	0.13190	0.44270	0.1800
HJUA	0.86690	0.10490	0.79020	0.0840
HJUB	0.91000	0.09190	0.84/20	0.0360
HOLA HOLD	0.09130	0.40130	0.71400	2.0000
HOTP HOTP	0.03140	0.34170	0.73930	2.0000
HCCII HCCII	0.09400	0.13160	0.03/00	2.0000
1372 1372	0.95150	0.13100	0.000/0 0 11260	0.1040
1134A	1 00000	0.34300	0.11200	0.1000
н35	1.00090 0.90940	0.34010	0.00400	0.0000
1100	0.00010	0.45240	0.00240	0.0000

Table SI4(b)(cont.): Anisotropic displacement parameters(A^2 x 10^3) for $[K_2Mg_2U_2(C_2O_4)_7]$;11H2O, **SPA-3**. The anisotropic displacement factor exponent takes the form: -2 $pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

Atom	U(1,1) or 1	UU(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
U1	0.0135(1)	0.0143(1)	0.0152(1)	0.0006(1)	0.0008(1)	0.0011(1)
К1	0.0409(10)	0.0330(9)	0.0242(8)	0	0.0147(7)	0
К2	0.0236(8)	0.0357(9)	0.0323(9)	0	-0.0025(6)	0
Mg1	0.0347(14)	0.0479(17)	0.078(2)	0.0126(16)-	-0.0213(14)	-0.0166(13)
01	0.0205(18)	0.0291(18)	0.030(2)	0.0085(17)	0.0032(15)	0.0017(16)
02	0.0232(19)	0.041(3)	0.028(2)	0.0165(19)	0.0045(15)	0.0033(18)
03	0.039(3)	0.116(7)	0.044(3)	0.040(4)	-0.005(2)	0.021(4)
04	0.020(2)	0.079(4)	0.055(3)	0.018(3)	0.005(2)	0.013(3)
05'	0.0205(17)	0.0277(18)	0.0254(18)	-0.0067(16)	0.0049(14)	-0.0028(15)
06	0.0240(19)	0.046(3)	0.028(2)	-0.0133(19)	0.0029(15)	-0.0043(19)
07	0.029(2)	0.042(3)	0.042(3)	-0.014(2)	0.0120(19)	0.003(2)
08	0.033(2)	0.068(4)	0.027(2)	-0.016(2)-	-0.0020(18)	0.003(2)
09	0.037(2)	0.0187(17)	0.030(2)	0.0011(15)	0.0157(17)	-0.0013(16)
010	0.0255(18)	0.0170(16)	0.032(2)	-0.0012(14)	0.0085(15)	0.0010(14)
011	0.0193(17)	0.0198(17)	0.040(2)	0.0003(16)	0.0012(15)	0.0026(14)
012	0.0203(17)	0.0173(16)	0.041(2)	0.0019(16)-	-0.0004(15)	-0.0026(14)
013	0.0247(18)	0.0297(18)	0.0179(16)	0.0022(15)	0.0016(13)	-0.0048(16)
014	0.0201(16)	0.031(2)	0.0188(16)	0.0040(15)-	-0.0016(13)	-0.0050(16)
032	0.050(5)	0.054(5)	0.247(16)	0.005(7)	-0.052(7)	-0.004(4)
C1	0.018(2)	0.034(3)	0.033(3)	0.007(2)	0.0009(19)	0.006(2)
C2	0.028(3)	0.042(3)	0.027(3)	0.013(2)	0.001(2)	0.013(2)
C3	0.024(2)	0.028(3)	0.025(2)	-0.007(2)	0.0021(18)	0.005(2)
C4	0.024(2)	0.021(2)	0.025(2)	-0.0023(18)	0.0058(18)	0.0015(18)
C5	0.021(3)	0.020(3)	0.019(3)	0	0.001(2)	0
C6	0.016(3)	0.020(3)	0.021(3)	0	0.001(2)	0
С7	0.021(3)	0.017(3)	0.020(3)	0	0.000(2)	0
C8	0.022(3)	0.017(3)	0.022(3)	0	0.000(2)	0
С9	0.0162(18)	0.020(2)	0.0171(18)	0.0024(15)-	-0.0001(14)	-0.0013(15)
030	0.0057(13)	0.058(3)	0.0229(17)	-0.0060(18)	0.0040(11)	0.0074(15)
031	0.082(10)	0.36(3)	0.63(5)	-0.38(4)	0.116(19)	-0.077(15)
033	0.041(3)	0.139(8)	0.051(4)	0.012(5)	0.023(3)	0.007(4)
034	0.078(6)	0.121(8)	0.101(7)	0.018(7)	0.060(5)	0.007(6)
035	0.26(4)	0.25(4)	0.35(6)	0	0.02(4)	0

Figure SI5. ORTEP plot (30% probability level) for the assymetric unit of $[K_2Mg_2U_2(C_2O_4)_7]$;11H₂O, **SPA-3**.

Table SI5. Distances in Å for $[K_2Mg_2U_2(C_2O_4)_7]$;11H₂O, SPA-3.

U1	-01	2.422(4)	02	-C2	1.274(7)
U1	-02	2.386(5)	03	-C2	1.242(9)
U1	-05'	2.400(4)	04	-C1	1.232(7)
U1	-06	2.372(5)	05'	-C4	1.269(7)
U1	-09	2.512(4)	06	-C3	1.275(7)
U1	-010	2.541(4)	07	-C4	1.237(8)
U1	-011	2.553(4)	08	-C3	1.235(7)
U1	-012	2.511(4)	09	-C5	1.251(5)
U1	-013	2.478(4)	010	-C6	1.248(5)
U1	-014_h	2.474(4)	011	-C7	1.256(5)
K1	-02	2.759(5)	012	-C8	1.248(5)
K1	-02_c	2.759(5)	013	-C9	1.253(6)
K1	-07_f	2.904(6)	014	-C9	1.249(7)
K1	-08_f	2.715(6)	032	-H32C	0.9988
K1	-07_i	2.904(6)	032	-H32A	0.9541
K1	-08_i	2.715(6)	030	-H30B	0.9564
K2	-03	2.807(8)	030	-H30A	0.9863
K2	-03_a	2.914(8)	031	-H31A	0.7615
K2	-04_a	2.888(7)	031	-H31B	0.9364
K2	-03_b	2.914(8)	033	-H33A	0.9558
K2	-04_b	2.888(7)	033	-НЗЗВ	0.9440
K2	-03_c	2.807(8)	034	-H34C	0.8940
K2	-07_f	2.803(5)	034	-H34A	0.8404
K2	-07_i	2.803(5)	035	-H35_k	0.8487
Mg1	-07	2.800(6)	035	-Н35	0.8487
Mg1	-032	2.735(9)	C1	-C2	1.527(9)
Mg1	-08_i	2.831(7)	C3	-C4	1.545(9)
01	-C1	1.269(8)	C5	-C6	1.531(10)
C7	-C8	1.533(12)	С9	-C9_h	1.550(8)

Table SI6. Angles in ° for $[K_2Mg_2U_2(C_2O_4)_7]$;11H₂O, SPA-3.

01	-U1	-02 -05 /	65.09(15)	06	-U1	-013	137.37(15)
01	-01 _111	-05	147.JU(1J) 86.47(15)	00	-UI _II1	-014_11	132.00(10)
01	_U1	-09	68 52(15)	09	_U1	-010	11858(13)
01	_U1	-010	115 75(15)	09	_U1	-011	134 34 (14)
01	_U1	-010	63 81 (15)	09	_U1	-012	134.54(14) 74 52(15)
01	-01 -111	-011	$126 \ 31 \ (15)$	09	-01 -111	-013	66 98 (15)
01	_TT1	-013	120.31(15) 131.71(15)	010	-111	-011	$176 \ 84 \ (14)$
01	-111	-014 h	$76 \ 44(14)$	010	-111	-012	117 63(13)
02	-111	-05'	88 87 (15)	010	-111	-013	65 98 (15)
02	-111	-06	$69 \ 63 \ (17)$	010	-111	-014 h	117 00(15)
02	-111	-09	77 50(15)	011	-111	-012	63 22 (13)
02	-U1	-010	65.11(14)	011	-U1	-013	116.72(15)
02	-U1	-011	112.41(15)	011	-U1	-014 h	66.09(15)
02	-U1	-012	147.38(15)	012	-U1	-013	66.96(15)
02	-U1	-013	130.50(16)	012	-U1	-014 h	75.17(15)
02	-U1	-014 h	135.00(15)	013	-U1	-014 h	65.47(14)
05'	-U1	-06 -	65.48(15)	02	-K1	-02 c	80.40(15)
05'	-U1	-09	126.80(15)	02	-K1	-07 [_] f	133.28(15)
05'	-U1	-010	64.32(15)	02	-K1	-08 [_] f	166.05(17)
05'	-U1	-011	114.21(15)	02	-K1	-07 [_] i	85.71(14)
05'	-U1	-012	66.99(15)	02	-K1	-08 ⁻ i	101.75(16)
05'	-U1	-013	76.77(14)	02 c	-K1	-07 [_] f	85.71(14)
05'	-U1	-014 h	134.46(15)	02 ⁻ c	-K1	-08 [_] f	101.75(16)
06	-U1	-09 -	144.95(15)	02 ⁻ c	-K1	-07 ⁻ i	133.28(15)
06	-U1	-010	110.86(15)	02 ⁻ c	-K1	-08 ⁻ i	166.05(17)
06	-U1	-011	66.09(15)	07 [_] f	-K1	-08 [_] f	60.63(15)
06	-U1	-012	80.16(15)	07 [_] f	-K1	-07 ⁻ i	72.18(16)
07 f	-K1	-08 i	102.08(16)	04 b	-K2	-07 ⁻ i	131.76(16)
07_i	-K1	-08_f	102.08(16)	03_c	-K2	-07_f	74.45(19)
08_f	-K1	-08_i	72.88(19)	03_c	-K2	-07_i	112.5(2)
07_i	-K1	-08_i	60.63(15)	07_f	-K2	-07_i	75.20(15)
03	-K2	-03_a	64.7(2)	07	-Mg1	-032	154.9(3)
03	-K2	-04_a	97.5(2)	07	-Mg1	-08_i	75.36(18)
03	-K2	-03_b	96.9(2)	08_i	-Mg1	-032	128.0(3)
03	-K2	-04_b	153.7(2)	U1	-01	-C1	121.3(4)
03	-K2	-03_c	64.4(3)	U1	-02	-K1	127.12(17)
03	-K2	-07_f	112.5(2)	U1	-02	-C2	120.9(4)
03	-K2	-07_i	74.45(19)	K1	-02	-C2	112.0(4)
03_a	-K2	-04_a	57.08(19)	K2	-03	-C2	148.8(6)
03_a	-K2	-03_b	61.8(3)	K2	-03	-K2_a	83.1(2)
03_a	-K2	-04_b	101.2(2)	K2_a	-03	-C2	110.7(5)
03_a	-K2	-03_c	96.9(2)	K2_a	-04	-C1	116.4(5)
03_a	-K2	-07_f	170.9(2)	U1	-05'	-C4	121.9(4)
03_a	-K2	-0/_1	111.2(2)	UL	-06	-03	122.3(4)
03_D	-KZ	-04_a	101.2(2)	Mg I	-07	-C4	109.4(4)
04_a	-KZ	-04_b	91.9(Z) 152.7(2)	KI_g	-07	-Mgl	119.8(2)
03_0	-KZ	-04_a	133./(2)	KZ_g	-07	-Mg I	04.4/(14) 110 7(4)
04_a	-n2 2	-07_1	131.70(10) 77.00(15)	KI_G	-07	-04	112.7(4)
04_d	-RZ _V2	-0/_1 -0/_h	77.00(13) 57.00(10)	r∠_y k1 ~	-07	-K2 ~	149.4(J) 80 50/15)
03_D	-K7	-04_D -03_0	SI.UO(19) 61 7101	™_y ⊮1 ~	-07 -09	_C3	117 E/EV
03 h	-K2	-03_0 -07_f	111 2(2)	Mali	-08 -08	-03	11/ 2/5)
03 h	-K2	-07_i	170 Q(2)	riy⊥_⊥ K1 ~	-08 -08	$-M\alpha^{1}$	121 2(2)
	-K2	-04 h	97 5(2)	тт_9 111	-09	-05	120 6(4)
04 h	-K2	-07 f	77 80(15)	τ <u>τ</u> 1	-010	-06	119 8(4)
<u> </u>	112	$\checkmark' _^{\perp}$,,,(1)	0 T	OT0	00	±±2.0(4)

U1	-011	-C7	119.7(4)	06	-C3	-08	126.4(6)
U1	-012	-C8	121.4(4)	05'	-C4	-C3	113.2(5)
U1	-013	-C9	120.4(4)	07	-C4	-C3	120.3(5)
Ul h	-014	-C9	120.5(4)	05'	-C4	-07	126.5(6)
H32A	-032	-H32C	106.82	09	-C5	-C6	116.6(4)
Mg1	-032	-H32A	109.13	09	-C5	-09 c	126.7(7)
Mg1	-032	-H32C	107.63	09 c	-C5	-C6	116.6(4)
H30A	-030	-H30B	74.46	010	-C6	-C5	116.6(3)
H31A	-031	-H31B	89.50	010	-C6	-010 c	126.8(6)
H33A	-033	-НЗЗВ	80.00	010 c	-C6	-C5	116.6(3)
H34A	-034	-H34C	83.12	011	-C7	-C8	116.5(4)
Н35	-035	-H35 k	92.14	011 d	-C7	-C8	116.5(4)
04	-C1	-C2 -	119.2(6)	011	-C7	-011 d	127.0(7)
01	-C1	-04	126.3(6)	012	-C8	-012 ^d	126.6(7)
01	-C1	-C2	114.5(5)	012_d	-C8	-C7 [—]	116.7(4)
02	-C2	-C1	113.8(5)	012	-C8	-C7	116.7(4)
03	-C2	-C1	120.4(6)	013	-C9	-C9 h	116.6(5)
02	-C2	-03	125.8(6)	014	-C9	-C9 ^h	117.0(4)
06	-C3	-C4	112.6(5)	013	-C9	-014	126.4(6)
08	-C3	-C4	121.0(6)				

Table SI7 (a). Atomic coordinates and equivalent isotropic displacement parameters ($Å^2x10^2$) for $[K_2ZrMn(C_2O_4)_4]$;8H₂O, **SPA-4**.

Zrl	0.67327(3)	0.56068(3)	0.79184(3)	0.0192(1)
Mn1	0.76678(10)	0.50272(12)	1.06775(9)	0.0576(4)
01	0.8406(3)	0.6135(3)	0.7756(3)	0.0280(9)
02	0.8153(3)	0.4640(3)	0.8831(2)	0.0258(8)
03	1.0369(4)	0.5993(4)	0.8190(4)	0.0429(13)
04	1.0066(3)	0.4181(3)	0.9218(3)	0.0322(10)
05	0.6821(4)	0.7990(3)	0.9962(3)	0.0370(11)
06	0.6039(5)	0.8889(3)	0.8138(3)	0.0463(13)
07	0.6360(3)	0.7310(3)	0.7584(2)	0.0281(9)
08	0.7030(3)	0.6485(3)	0.9238(2)	0.0287(9)
09	0.6415(3)	0.5843(3)	0.6369(2)	0.0270(9)
010	0.6380(4)	0.4087(3)	0.7215(2)	0.0302(10)
011	0.5861(4)	0.3169(3)	0.5861(3)	0.0377(13)
012	0.6314(4)	0.5044(3)	0.4985(3)	0.0366(11)
013	0.3070(5)	0.5092(6)	0.7573(5)	0.071(2)
014	0.4368(5)	0.3875(6)	0.9075(6)	0.081(3)
015	0.5996(3)	0.4584(3)	0.8855(3)	0.0274(9)
016	0.4795(3)	0.5748(3)	0.7472(3)	0.0324(10)
C1	0.9406(4)	0.5715(4)	0.8213(4)	0.0274(12)
C2	0.9241(4)	0.4754(4)	0.8822(3)	0.0238(10)
C3	0.6751(4)	0.7467(4)	0.9252(3)	0.0253(11)
C4	0.6340(4)	0.7963(4)	0.8251(3)	0.0257(11)
C5	0.6160(4)	0.3986(4)	0.6310(3)	0.0251(11)
C6	0.6301(4)	0.5035(4)	0.5811(3)	0.0258(11)
C7	0.4158(5)	0.5150(6)	0.7843(4)	0.0400(16)
C8	0.4889(5)	0.4475(5)	0.8672(4)	0.0362(16)
*024B	0.4095(16)	0.9107(19)	0.0782(14)	0.035(6)
*024C	0.4003(9)	0.9863(9)	0.0410(10)	0.049(4)
020	0.8260(6)	0.2190(6)	1.0601(5)	0.074(2)
021	0.3155(8)	0.8062(10)	0.7266(6)	0.117(4)
022	0.6156(9)	0.3178(9)	0.0813(6)	0.105(4)
023	0.6376(3)	0.8359(4)	0.1694(3)	0.0434(13)
*024A	0.5357(8)	0.8880(8)	0.0272(7)	0.031(3)
K1	0.42759(11)	0.71203(9)	0.59627(8)	0.0329(3)
K2	0.71767(13)	0.26285(9)	0.86488(9)	0.0389(3)

Table SI7 (b). Anisotropic displacement parameters (A²) for $[K_2ZrMn(C_2O_4)_4]$;8H₂O , **SPA-4**. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*} U11 + ... + 2 h k a^{*} b^{*} U12]

Atom	U(1,1)	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
 Zr1	0.0172(2)	0.0206(2)	0.0185(2)	0.0020(1)	0.0031(1)	-0.0001(1)
Mn1	0.0403(6)	0.0839(9)	0.0478(6)	0.0188(6)	0.0117(5)	0.0056(6)
01	0.0193(14)	0.0289(15)	0.0341(17)	0.0081(13)	0.0048(12)	0.0009(12)
02	0.0189(14)	0.0292(15)	0.0270(15)	0.0055(12)	0.0031(11)	0.0010(12)
03	0.0215(17)	0.048(2)	0.058(3)	0.010(2)	0.0097(17)	-0.0040(16)
04	0.0246(16)	0.0325(17)	0.0358(18)	0.0016(14)	0.0027(14)	0.0069(13)
05	0.047(2)	0.0358(19)	0.0297(17)	-0.0071(15)	0.0136(16)	-0.0004(17)
06	0.069(3)	0.0263(18)	0.041(2)	0.0009(16)	0.012(2)	0.0129(19)
07	0.0340(18)	0.0243(15)	0.0229(14)	0.0022(11)	0.0031(13)	0.0039(13)
08	0.0331(17)	0.0274(16)	0.0235(14)	0.0037(12)	0.0047(12)	0.0039(13)
09	0.0333(18)	0.0250(14)	0.0215(14)	0.0005(11)	0.0058(13)	-0.0033(13)
010	0.040(2)	0.0248(14)	0.0244(15)	0.0021(12)	0.0071(14)	0.0024(14)
011	0.054(3)	0.0262(17)	0.0310(18)	-0.0085(14)	0.0093(17)	-0.0022(16)
012	0.049(2)	0.041(2)	0.0219(15)	-0.0006(14)	0.0136(15)	0.0021(18)
013	0.027(2)	0.106(5)	0.078(4)	0.034(4)	0.012(2)	0.003(3)
014	0.035(3)	0.104(5)	0.110(5)	0.071(4)	0.029(3)	0.001(3)
015	0.0224(15)	0.0323(16)	0.0288(15)	0.0059(13)	0.0093(12)	-0.0014(12)
016	0.0192(15)	0.044(2)	0.0342(18)	0.0114(15)	0.0081(13)	0.0072(14)
C1	0.023(2)	0.028(2)	0.030(2)	-0.0003(16)	0.0057(16)	0.0009(16)
C2	0.0197(18)	0.0246(18)	0.0247(18)	-0.0026(15)	0.0027(14)	0.0025(14)
C3	0.0232(19)	0.0255(19)	0.0268(19)	-0.0020(15)	0.0068(15)	-0.0019(15)
C4	0.0222(19)	0.0254(18)	0.028(2)	0.0010(15)	0.0049(15)	0.0009(15)
C5	0.025(2)	0.026(2)	0.0223(18)	-0.0011(15)	0.0038(15)	0.0040(15)
C6	0.023(2)	0.032(2)	0.0228(18)	0.0004(15)	0.0075(15)	0.0023(16)
C7	0.024(2)	0.055(3)	0.043(3)	0.017(3)	0.013(2)	0.005(2)
C8	0.027(2)	0.043(3)	0.040(3)	0.014(2)	0.012(2)	0.002(2)
024B	0.024(8)	0.051(12)	0.036(9)	-0.027(9)	0.017(7)	-0.011(8)
024C	0.029(5)	0.035(5)	0.085(9)	-0.033(6)	0.022(5)	0.004(4)
020	0.063(4)	0.079(4)	0.080(4)	-0.012(4)	0.021(3)	0.004(3)
021	0.104(6)	0.186(10)	0.061(4)	-0.004(5)	0.024(4)	0.080(7)
022	0.101(6)	0.135(8)	0.080(5)	-0.004(5)	0.029(5)	0.007(6)
023	0.0212(15)	0.067(3)	0.051(2)	-0.048(2)	0.0248(15)	-0.0229(17)
024A	0.027(4)	0.037(5)	0.034(4)	-0.006(4)	0.015(4)	0.001(4)
K1	0.0344(5)	0.0337(5)	0.0259(4)	0.0019(4)	0.0014(4)	0.0025(4)
K2	0.0501(7)	0.0280(5)	0.0386(6)	-0.0024(4)	0.0128(5)	0.0081(5)

Figure SI8. ORTEP plot (30% probability level) for the assymetric unit of $[K_2Mn\{Zr (C_2O_4)_4\}]$;8H₂O, SPA-4.

Table SI8. Bond Distances (Angstrom) for [K2ZrMn(C2O4)4];8H2O, SPA-4

Zr1 Zr1 Zr1 Zr1 Zr1 Zr1 Zr1 Zr1 Zr1	-01 -02 -07 -08 -09 -010 -015 -016	2.165(4) 2.193(4) 2.222(4) 2.173(3) 2.219(3) 2.163(4) 2.239(4) 2.200(4) 2.200(4)	04 05 06 07 08 09 010 011	-C2 -C3 -C4 -C4 -C3 -C6 -C5 -C5	1.219(6) 1.218(6) 1.220(6) 1.287(6) 1.285(6) 1.292(6) 1.286(5) 1.221(6)
Mn1 Mn1	-02	2.972(4)	012	-C6 -C7	1.219(6)
Mn1	-015	2.888(4)	013	-C8	1.231(10)
Mn1	-013_a	2.948(7)	015	-C8	1.265(7)
Mn1	-014_a	2.890(7)	016	-C7	1.293(8)
Mn1	-03_b	2.754(6)	024B	-024C	1.09(3)
Mn1	-04_b	2.821(4)	C1	-C2	1.554(7)
01	-C1	1.293(7)	С3	-C4	1.543(6)
02	-C2	1.298(6)	C5	-C6	1.547(7)
03	-C1	1.201(7)	C7	-C8	1.533(9)

Table SI9. Angles (degrees) for $[K_2ZrMn(C_2O_4)_4]$;8H₂O, SPA-4.

01	-Zrl	-02	71.13(14)	02	-Mn1	-08	59.21(10)
01	-Zrl	-07	78.84(14)	02	-Mn1	-015	51.80(10)
01	-Zrl	-08	91.35(15)	02	-Mn1	-013 a	166.37(17)
01	-Zrl	-09	74.62(15)	02	-Mn1	-014 [_] a	125.52(19)
01	-Zrl	-010	106.08(16)	02	-Mn1	-03 b	97.13(14)
01	-Zrl	-015	140.83(15)	02	-Mn1	-04 ^b	71.20(11)
01	-Zrl	-016	147.96(15)	08	-Mn1	-015	56.77(11)
02	-Zrl	-07	137.92(13)	08	-Mn1	-013 a	128.53(17)
02	-Zrl	-08	80.80(13)	08	-Mn1	-014 [_] a	73.82(18)
02	-Zrl	-09	125.15(13)	03 b	-Mn1	-08 -	140.97(14)
02	-Zrl	-010	78.83(14)	04 b	-Mn1	-08	81.33(12)
02	-Zrl	-015	70.58(14)	013 a	-Mn1	-015	120.26(16)
02	-Zrl	-016	140.79(14)	014 a	-Mn1	-015	80.68(18)
07	-Zrl	-08	70.98(12)	03 b	-Mn1	-015	134.56(14)
07	-Zrl	-09	71.26(12)	04 b	-Mn1	-015	120.26(12)
07	-Zrl	-010	139.00(12)	01 3 a	-Mn1	-014 a	56.5(2)
07	-Zrl	-015	127.38(13)	03 b	-Mn1	-013 ⁻ a	81.87(18)
07	-Zrl	-016	74.50(14)	04 b	-Mn1	-013 ⁻ a	119.06(16)
08	-Zrl	-09	141.57(14)	03 b	-Mn1	-014 ⁻ a	137.3(2)
08	-Zrl	-010	147.01(13)	04 b	-Mn1	-014 ⁻ a	129.42(17)
08	-Zrl	-015	74.76(14)	03 b	-Mn1	-04 b	60.79(14)
08	-Zrl	-016	96.38(14)	Zr1	-01	-C1	122.9(3)
09	-Zrl	-010	71.12(13)	Zr1	-02	-Mn1	98.72(13)
09	-Zrl	-015	136.72(14)	Zr1	-02	-C2	121.2(3)
09	-Zrl	-016	80.19(14)	Mn1	-02	-C2	116.4(3)
010	-Zrl	-015	74.12(14)	Mn1_b	-03	-C1	119.1(4)
010	-Zrl	-016	83.62(16)	Mn1_b	-04	-C2	115.6(3)
015	-Zrl	-016	70.98(15)	Zr1	-07	-C4	119.9(3)
Zr1	-08	-Mn1	106.49(15)	05	-C3	-C4	121.5(5)
Zr1	-08	-C3	122.1(3)	08	-C3	-C4	112.8(4)
Mn1	-08	-C3	130.6(3)	06	-C4	-07	125.4(4)
Zr1	-09	-C6	120.1(3)	06	-C4	-C3	121.2(4)
Zr1	-010	-C5	122.4(3)	07	-C4	-C3	113.4(4)
Mn1_a	-013	-C7	105.4(5)	010	-C5	-011	125.7(5)
Mn1_a	-014	-C8	108.4(5)	010	-C5	-C6	112.9(4)
Zr1	-015	-Mn1	100.09(14)	011	-C5	-C6	121.4(4)
Zr1	-015	-C8	119.6(4)	09	-C6	-012	126.6(5)
Mn1	-015	-C8	127.4(4)	09	-C6	-C5	112.4(4)
Zr1	-016	-C7	120.6(4)	012	-C6	-C5	121.0(4)
01	-C1	-03	126.7(5)	013	-C7	-016	125.4(6)
01	-C1	-C2	111.8(4)	013	-C7	-C8	121.3(6)
03	-C1	-C2	121.5(5)	016	-C7	-C8	113.4(5)
02	-C2	-04	126.0(5)	014	-C8	-015	126.5(6)
02	-C2	-C1	112.5(4)	014	-C8	-C7	118.7(6)
04	-C2	-C1	121.5(4)	015	-C8	-C7	114.8(5)
05	-C3	-08	125.7(4)				