Molecular structures of Se(SCH₃)₂ and Te(SCH₃)₂ using gas-phase electron diffraction and *ab initio* and DFT geometry optimisations

Holger Fleischer,^{*a*} Derek A. Wann,^{*b*} Sarah L. Hinchley,^{*b*} Konstantin B. Borisenko,^{*b*} James R. Lewis,^{*c*} Richard J. Mawhorter,^{*d*} Heather E. Robertson^{*b*} and David W. H. Rankin^{*b*}

^a Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10–14, 55099 Mainz, Germany. E-mail: fleische@unimainz.de

^b School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK. E-mail: d.w.h.rankin@ed.ac.uk

^c Cambridge Astronomy Survey Unit, Institute of Astronomy, Madingley Road, Cambridge, CB3 7XT, UK.

^d Department of Physics and Astronomy, Pomona College, 610 North College Avenue, Claremont, CA 91711-6359, USA.

Electronic Supplementary Information

Table S1 Nozzle-to-film distances (mm), weighting functions (nm⁻¹), scale factors, correlation parameters and electron wavelengths, λ (pm) used in the electron diffraction studies of Se(SCH₃)₂ and Te(SCH₃)₂.

	Nozzle-to-film distance ^{<i>a</i>}	Δs	<i>s</i> _{min}	SW_1	SW2	s _{max}	Scale factor ^b	Correlation parameter	λ
So(SCU.)	94.89	2	80	100	292	320	0.798(22)	0.444	6.020
$Se(SCH_3)_2$	293.46	2	20	40	104	120	0.736(6)	0.436	6.020
$T_{\alpha}(\mathbf{SCH})$	97.51	4	88	108	220	250	0.742(22)	0.161	6.020
$Ie(SCH_3)_2$	259.65	2	20	40	104	120	0.644(8)	-0.124	6.020

^{*a*} Determined by reference to the scattering pattern of benzene. ^{*b*} Values in parentheses are the estimated standard deviations.

	HT-L (frac)	HT-L (lin)	HT-S (frac)	HT-S (lin)	RT-L (frac)	RT-L (lin)	RT-S (frac)	RT-S (lin)
rC–C	1.3955(2)	1.3959(2)	1.3991(4)	1.3992(4)	1.3930(8)	1.3937(9)	1.3971(5)	1.3970(6)
uC–C	0.0500(10)	0.0494(8)	0.0429(11)	0.0430(12)	0.0284(95)	0.0469(63)	0.0445(14)	0.0466(15)
иС–Н	0.0727(23)	0.0709(20)	0.0672(33)	0.0706(35)	0.0322(263)	0.0676(150)	0.0969(73)	0.0910(60)
$uC\cdots C_m$	0.0643(13)	0.0654(11)	0.0608(11)	0.0603(14)	0.0569(66)	0.0608(68)	0.0588(14)	0.0598(17)
$u \mathbf{C} \cdots \mathbf{C}_p$	0.0642(19)	0.0676(18)	0.0707(23)	0.0708(32)	0.0493(119)	0.0550(118)	0.0659(25)	0.0647(33)
uC…H _o	0.1067(23)	0.1078(20)	0.0946(36)	0.0895(42)	0.0951(91)	0.0892(98)	0.1053(44)	0.1052(55)
$u \mathbf{C} \cdots \mathbf{H}_m$	0.1141(23)	0.1139(22)	0.1181(56)	0.1139(82)	0.1292(92)	0.1329(104)	0.1169(52)	0.1280(83)
$u \mathbf{C} \cdots \mathbf{H}_p$	0.1105(47)	0.1146(48)	0.1093(102)	0.0933(139)	0.1275(184)	0.1320(216)	0.0925(85)	0.0891(124)
*								

Table S2 Comparison of *r*C–C and various amplitudes of vibration for the fractional weight (frac) and bilinear (lin) methods of digital pixel interpolation for the GED scattering pattern for benzene. a

^{*a*} HT and RT refer to data collected at high temperature and room temperature respectively. L denotes the use of the long nozzle-tocamera distance, small angle scattering and higher signal-to-noise ratio (S/N). S denotes the use of the short nozzle-to-camera distance, large angle scattering and lower S/N. Frac refers to the assignment of fractional weight to pixels on boundaries of circular *s*value bins and lin to a bilinear interpolation to evaluate data at fixed grid of points.

0.0442

0.0456

0.0690

0.0777

0.0693

The following notes explain the contents of Table S2 in more detail.

0.0110

0.0612

 $R_{\rm G}$

0.0120

<u>Fractional weight method</u> provides a significantly better fit to data for 3 of the 4 cases (exception HT-L). The method uses data from each pixel, all with the same weight. It requires more computation than the interpolation method and is therefore slower, though not prohibitively so.

<u>Bilinear interpolation method</u> chooses a circular grid of points spaced in 1 degree intervals (same method as Joyce-Loebl densitometer), so points are closer together at small scattering angles with better S/N. Hence this small angle data is used more often, giving it more weight. The interpolation algorithms are fast and so the computations are quicker than with the fractional weight method.

g^+g^+	g^+g^-
x y z	x y z
0000 0.0000 0.9131	0.7851 -0.5180 0.0000
0000 1.7226 -0.4399 -	0.5327 -0.3343 1.7392
0000 -1.7226 -0.4399 -	0.5327 -0.3343 -1.7392
7525 1.8317 -0.9083 -	0.5327 1.4560 2.0579
7525 -1.8317 -0.9083 -	0.5327 1.4560 -2.0579
8519 2.7117 -1.5315 -	1.0023 1.5946 3.0239
0494 0.9590 -1.4722 -	1.1035 1.9863 1.3094
3749 1.9370 -0.0317	0.4772 1.8383 2.0932
8519 -2.7117 -1.5315 -	1.0023 1.5946 -3.0239
0494 -0.9590 -1.4722 -	1.1035 1.9863 -1.3094
3749 -1.9370 -0.0317	0.4772 1.8383 -2.0932
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table S3 Calculated [HF/6-31G(d)] coordinates for Se(SCH₃)₂.

Sum of electronic and zero-point energies = -3271.7673 Hartree for g^+g^+ Sum of electronic and zero-point energies = -3271.7648 Hartree for g^+g^-

Table S4 Calculated [B3LYP/6-31G(d)	coordinates for Se	e(SCH ₃) ₂ .
-----------------------	----------------	--------------------	-------------------------------------

		$g^{^+}\!g^{^+}$			g^+g^-	
Atom	x	У	Z	x	У	Z
Se(1)	0.0000	0.0000	0.9035	0.7786	-0.5343	0.0000
S(2)	0.0000	1.7671	-0.4424	-0.5284	-0.3323	1.7835
S(3)	0.0000	-1.7671	-0.4424	-0.5284	-0.3323	-1.7835
C(4)	1.7767	1.9032	-0.8869	-0.5284	1.4822	2.0796
C(5)	-1.7767	-1.9032	-0.8869	-0.5284	1.4822	-2.0796
H(6)	1.8762	2.8084	-1.4941	-0.9545	1.6326	3.0765
H(7)	2.0893	1.0370	-1.4744	-1.1477	1.9998	1.3438
H(8)	2.3931	1.9935	0.0098	0.4901	1.8749	2.0572
H(9)	-1.8762	-2.8084	-1.4941	-0.9545	1.6326	-3.0765
H(10)	-2.0893	-1.0370	-1.4744	-1.1477	1.9998	-1.3438
H(11)	-2.3931	-1.9935	0.0098	0.4901	1.8749	-2.0572

Sum of electronic and zero-point energies = -3275.5371 Hartree for g^+g^+ Sum of electronic and zero-point energies = -3275.5353 Hartree for g^+g^-

		$g^{\scriptscriptstyle +}g^{\scriptscriptstyle +}$			g^+g^-	
Atom	x	У	Z	x	у	Z
Se(1)	0.0000	0.0000	0.9232	0.7822	-0.5325	0.0000
S(2)	0.0000	1.7256	-0.4402	-0.5311	-0.3297	1.7499
S(3)	0.0000	-1.7256	-0.4402	-0.5311	-0.3297	-1.7499
C(4)	1.7501	1.7597	-0.9251	-0.5311	1.4725	1.9940
C(5)	-1.7501	-1.7597	-0.9251	-0.5311	1.4725	-1.9940
H(6)	1.8847	2.6288	-1.5742	-0.9423	1.6575	2.9898
H(7)	2.0079	0.8549	-1.4780	-1.1568	1.9722	1.2534
H(8)	2.3907	1.8559	-0.0479	0.4858	1.8638	1.9460
H(9)	-1.8847	-2.6288	-1.5742	-0.9423	1.6575	-2.9898
H(10)	-2.0079	-0.8549	-1.4780	-1.1568	1.9722	-1.2534
H(11)	-2.3907	-1.8559	-0.0479	0.4858	1.8638	-1.9460
Sum of e	electronic an	d zero-poin	t energies =	-3272.3901	Hartree for	g^+g^+

Table S5 Calculated [MP2/6-31G(d)] coordinates for Se(SCH₃)₂.

Sum of electronic and zero-point energies = -3272.3878 Hartree for g^+g^-

		$g^+\!g^+$			g^+g^-	
Atom	x	У	Z	x	У	Z
Se(1)	0.0000	0.0000	1.4507	1.1046	-1.1369	0.0000
S(2)	0.0000	1.7242	0.0700	-0.2184	-0.9287	1.7553
S(3)	0.0000	-1.7242	0.0700	-0.2184	-0.9287	-1.7553
C(4)	1.7391	1.7273	-0.4886	-0.2184	0.8792	2.0339
C(5)	-1.7391	-1.7273	-0.4886	-0.2184	0.8792	-2.0339
H(6)	1.8402	2.5629	-1.1938	-0.7258	1.0416	2.9942
H(7)	1.9719	0.7879	-1.0032	-0.7713	1.4006	1.2452
H(8)	2.4202	1.8761	0.3561	0.8044	1.2658	2.0966
H(9)	-1.8402	-2.5629	-1.1938	-0.7258	1.0416	-2.9942
H(10)	-1.9719	-0.7879	-1.0032	-0.7713	1.4006	-1.2452
H(11)	-2.4202	-1.8761	0.3561	0.8044	1.2658	-2.0966

Table S6 Calculated [MP2/LanL2DZ(d)] coordinates for Se(SCH₃)₂.

Sum of electronic and zero-point energies = -108.6376 Hartree for g^+g^+ Sum of electronic and zero-point energies = -108.6348 Hartree for g^+g^-

					· · /-	
		g^+g^+			g^+g^-	
Atom	x	У	Z	x	У	Z
Te(1)	0.0000	0.0000	0.8631	0.7249	-0.4791	0.0000
S(2)	0.0000	1.8461	-0.6751	-0.7522	-0.1929	1.8735
S(3)	0.0000	-1.8461	-0.6751	-0.7522	-0.1929	-1.8735
C(4)	1.7324	1.9249	-1.2512	-0.7522	1.6096	2.1794
C(5)	-1.7324	-1.9249	-1.2512	-0.7522	1.6096	-2.1794
H(6)	1.7927	2.7595	-1.9377	-1.3144	1.7654	3.0912
H(7)	1.9986	1.0167	-1.7707	-1.2369	2.1370	1.3722
H(8)	2.4062	2.0910	-0.4245	0.2523	1.9812	2.3135
H(9)	-1.7927	-2.7595	-1.9377	-1.3144	1.7654	-3.0912
H(10)	-1.9986	-1.0167	-1.7707	-1.2369	2.1370	-1.3722
H(11)	-2.4062	-2.0910	-0.4245	0.2523	1.9812	-2.3135
a a			•	= + = 2 2 4 0 0	TT 0	+ +

Table S7 Calculated [HF/3-21G(d)] coordinates for Te(SCH₃)₂.

Sum of electronic and zero-point energies = -7453.3400 Hartree for g^+g^+ Sum of electronic and zero-point energies = -7453.3381 Hartree for g^+g^-

		g^+g^+			g^+g^-	
Atom	x	У	Z	x	У	Z
Te(1)	0.0000	0.0000	1.5593	0.7158	-0.4677	0.0000
S(2)	0.0000	1.8457	0.0463	-0.7426	-0.2038	1.8714
S(3)	0.0000	-1.8457	0.0463	-0.7426	-0.2038	-1.8714
C(4)	1.7402	1.9488	-0.5096	-0.7426	1.5969	2.2006
C(5)	-1.7402	-1.9488	-0.5096	-0.7426	1.5969	-2.2006
H(6)	1.7925	2.7941	-1.1857	-1.3074	1.7346	3.1152
H(7)	2.0233	1.0497	-1.0384	-1.2281	2.1375	1.4005
H(8)	2.4050	2.1152	0.3261	0.2622	1.9687	2.3436
H(9)	-1.7925	-2.7941	-1.1857	-1.3074	1.7346	-3.1152
H(10)	-2.0233	-1.0497	-1.0384	-1.2281	2.1375	-1.4005
H(11)	-2.4050	-2.1152	0.3261	0.2622	1.9687	-2.3436

 Table S8 Calculated [HF/LanL2DZ(d)] coordinates for Te(SCH₃)₂.

Sum of electronic and zero-point energies = -106.8570 Hartree for g^+g^+ Sum of electronic and zero-point energies = -106.8547 Hartree for g^+g^-

		g^+g^+			g^+g^-	
Atom	x	У	Z	x	У	Ζ
Te(1)	0.0000	0.0000	0.8306	0.7096	-0.4695	0.0000
S(2)	0.0000	1.9006	-0.6669	-0.7362	-0.2093	1.9239
S(3)	0.0000	-1.9006	-0.6669	-0.7362	-0.2093	-1.9239
C(4)	1.7702	2.0597	-1.1756	-0.7362	1.6106	2.2542
C(5)	-1.7702	-2.0597	-1.1756	-0.7362	1.6106	-2.2542
H(6)	1.8208	2.9385	-1.8298	-1.2597	1.7446	3.2087
H(7)	2.0894	1.1749	-1.7334	-1.2762	2.1502	1.4710
H(8)	2.4177	2.2147	-0.3082	0.2823	1.9977	2.3453
H(9)	-1.8208	-2.9385	-1.8298	-1.2597	1.7446	-3.2087
H(10)	-2.0894	-1.1749	-1.7334	-1.2762	2.1502	-1.4710
H(11)	-2.4177	-2.2147	-0.3082	0.2823	1.9977	-2.3453

 Table S9 Calculated [B3LYP/LanL2DZ(d)] coordinates for Te(SCH₃)₂.

Sum of electronic and zero-point energies = -108.0849 Hartree for g^+g^+ Sum of electronic and zero-point energies = -108.0833 Hartree for g^+g^-

		g^+g^+			g^+g^-	
Atom	x	У	Z	x	У	Z
Te(1)	0.0000	0.0000	1.5906	0.7151	-0.4788	0.0000
S(2)	0.0000	1.8374	0.0571	-0.7419	-0.1993	1.8775
S(3)	0.0000	-1.8374	0.0571	-0.7419	-0.1993	-1.8775
C(4)	1.7375	1.8447	-0.5247	-0.7419	1.6180	2.1307
C(5)	-1.7375	-1.8447	-0.5247	-0.7419	1.6180	-2.1307
H(6)	1.8205	2.6722	-1.2415	-1.2855	1.7955	3.0680
H(7)	1.9745	0.9021	-1.0309	-1.2623	2.1283	1.3132
H(8)	2.4312	2.0111	0.3063	0.2780	2.0051	2.2260
H(9)	-1.8205	-2.6722	-1.2415	-1.2855	1.7955	-3.0680
H(10)	-1.9745	-0.9021	-1.0309	-1.2623	2.1283	-1.3132
H(11)	-2.4312	-2.0111	0.3063	0.2780	2.0051	-2.2260

Table S10 Calculated [MP2/LanL2DZ(d)] coordinates for Te(SCH₃)₂.

Sum of electronic and zero-point energies = -107.4617 Hartree for g^+g^+ Sum of electronic and zero-point energies = -107.4596 Hartree for g^+g^-

Table S11 Least-squares correlation matrix (×100) for Se(SCH₃)₂.^{*a*}

	u_8	k_2
p_2	51	57
u_7	71	76
u_8		93

 $\frac{u_8}{a}$ Only elements with absolute values > 50% are shown; k_2 is a scale factor.

Table S12 Leas	t-squares correlation	<u>n matrix (×100</u>) for Te(SCH ₃) ₂ . ^{<i>a</i>}

	p_5	p_6	k_1	k_2
p_1		-63		
p_4	63			
u_8			62	72

^{*a*} Only elements with absolute values > 50% are shown; k_1 and k_2 are scale factors.

Figure S1 Experimental and difference (experimental-theoretical) molecular-scattering intensities for Se(SCH₃)₂.

Figure S2 Experimental and difference (experimental–theoretical) molecular-scattering intensities for Te(SCH₃)₂.

