Electronic Supplementary Information

Synthesis of rearranged ligands 3 and 4: {[RNLi(SiMe₂)]₂O} (R = 2,4,6-Me₃Ph) (0.950 g, 0.002 mol) was dissolved in 20 ml of dry THF and stirred at 298 K for one hour. The solvent was then removed *in vacuo*, the resulting powder washed with a minimum amount of hexanes and dried to obtain white {RNLiSiMe₂N(R)SiMe₂OLi} (**3**). Yield: 0.891 g (94 %). Anal. Calcd (%) for C₂₂H₃₄N₂Li₂OSi₂: C: 64.05, H: 8.31, N: 6.79. Found: C: 64.27, H: 8.59, N: 6.71%. ¹H NMR (d₈-THF): δ -0.3 (s, 6H, Si(CH₃)₂), -0.1 (s, 6H, Si(CH₃)₂), 2.0 (s, 3H, *p*-CH₃), 2.1 (s, 3H, *p*-CH₃), 2.2 (s, 6H, *o*-CH₃), 2.4 (s, 6H, *o*-CH₃), 6.5 (s, 2H, Ar-H), 6.7 (s, 2H, Ar-H). Ligand **4** (R = 2,6-ⁱPr₂Ph) was prepared via a similar procedure from 2.30 g (0.005 mol) of **2**, but required 24 hours of stirring at 298 K. Yield of **4**: 1.855 g (81 %). Anal. Calcd(%) for C₂₈H₄₆N₂Li₂OSi₂: C: 67.70, H: 9.33, N: 5.64. Found: C: 67.80, H: 9.45, N: 5.39 %. ¹H NMR (d₈-THF): δ -0.2 (s, 6H, Si(CH₃)₂), -0.1 (s, 6H, Si(CH₃)₂), 1.1 (d, 12H, CH(*CH*₃)₂), 1.2 (d, 12H, CH(*CH*₃)₂), 4.1(m, 2H, *o*-H), 4.2 (m, 2H, *o*-H), 6.2 (t, 1H, *p*-H), 6.3 (t, 1H, *p*-H), 6.6 (d, 2H, *m*-H), 6.7 (d, 2H, *m*-H).

Synthesis of chromium(II) complexes: For {Cr[Me₃PhN(SiMe₂)]₂O}₂ (**5**), ligand **2** (0.20 g, 0.50 mmol) was dissolved in 15 ml of Et₂O and added dropwise to anhydrous CrCb (0.06 g, 0.5 mmol) in 20 ml of Et₂O at -78 °C, yielding a brown/green coloured solution. After being stirred for 24 hours at room temperature, the solvent was removed *in vacuo*, the residue was extracted in hexanes and filtered through Celite[®]. Removal of the hexanes *in vacuo* gave violet {Cr[Me₃PhN(SiMe₂)]₂O}₂. Yield: 0.20 g (89%). Single crystals were obtained by refrigeration of a hexanes solution at -30 °C. Anal. Calcd (%) for C₂₂H₃₄N₂CrOSb₂: C: 58.63, H: 7.60, N: 6.22. Found: C: 57.07, H: 7.71, N: 5.97. μ_{eff} = 2.38 B.M. (298 K). Note: The elemental analysis of **5** has been repeated several times on several batches, including on single-crystals. The H and N values are always acceptable, but the C-values are consistently low from batch to batch. The C-values are improved with the addition of an oxidant but not to within 0.4% - we suspect that formation of chromium carbides (and therefore incomplete combustion) is impeding the C-analysis in this case.

To prepare complex **6**, a similar procedure using CrCb and ligand **3** (250 mg, 0.606 mmol), followed by a toluene extraction resulted in a dark green powder of $\{Cr[MesNSiMe_2N(Mes)SiMe_2O]\}_2$ (Mes = 2,4,6-Me_3Ph) (**6**). Yield: 227 mg (83%). Recrystallization from THF solution gave single crystals of the purple THF-adduct. Anal. Calcd. (%) for C₂₆H₄₂N₂CrO₂Si₂: C: 59.73, H: 8.10, N: 5.36. Found: C: 59.50, H: 8.24, N: 5.10. μ_{eff} : 2.88 B.M.(298 K). $\{Cr[RNSiMe_2N(R)SiMe_2O]\}_2$ (R = 2,6-ⁱPr₂Ph) (**7**) was prepared in a similar fashion via ligand **4** (250 mg, 0.503 mmol). Yield: 251 mg (93%). Anal. Calcd. (%) for C₂₈H₄₆N₂CrOSi₂: C: 62.88, H: 8.67, N: 5.24. Found: C: 62.49, H: 8.41, N: 5.41. μ_{eff} = 3.80 B.M. (298 K).