Electronic Supplementary Information

Synthesis of rearranged ligands 3 and 4: $\left\{\left[\mathrm{RNLi}\left(\mathrm{SiMe}_{2}\right)\right]_{2} \mathrm{O}\right\}\left(\mathrm{R}=2,4,6-\mathrm{Me} \mathrm{e}_{3} \mathrm{Ph}\right)(0.950$ $\mathrm{g}, 0.002 \mathrm{~mol}$) was dissolved in 20 ml of dry THF and stirred at 298 K for one hour. The solvent was then removed in vacuo, the resulting powder washed with a minimum amount of hexanes and dried to obtain white $\left\{\mathrm{RNLiSiMe}_{2} \mathrm{~N}(\mathrm{R}) \mathrm{SiMe}_{2} \mathrm{OLi}\right\}$ (3). Yield: $0.891 \mathrm{~g}(94 \%)$. Anal. Calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{Li}_{2} \mathrm{OSi}_{2}$: C: 64.05, H: 8.31, N: 6.79. Found: C: 64.27, H: 8.59, N: 6.71\%. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{8}-\mathrm{THF}\right): \delta-0.3\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.1(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.0\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.1\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.2\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3}\right), 2.4\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3}\right)$, $6.5(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.7(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$. Ligand $4\left(\mathrm{R}=2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{Ph}\right)$ was prepared via a similar procedure from $2.30 \mathrm{~g}(0.005 \mathrm{~mol})$ of $\mathbf{2}$, but required 24 hours of stirring at 298 K. Yield of 4: $1.855 \mathrm{~g}(81 \%)$. Anal. Calcd(\%) for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{Li}_{2} \mathrm{OSi}_{2}$: C: 67.70, H: 9.33, $\mathrm{N}: 5.64$. Found: $\mathrm{C}: 67.80, \mathrm{H}: 9.45, \mathrm{~N}: 5.39 \% .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{d}_{8}-\mathrm{THF}\right): \delta-0.2(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.1\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.1\left(\mathrm{~d}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.2\left(\mathrm{~d}, 12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $4.1(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H}), 4.2(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H}), 6.2(\mathrm{t}, 1 \mathrm{H}, p-\mathrm{H}), 6.3(\mathrm{t}, 1 \mathrm{H}, p-\mathrm{H}), 6.6(\mathrm{~d}, 2 \mathrm{H}, m-\mathrm{H})$, $6.7(\mathrm{~d}, 2 \mathrm{H}, m-\mathrm{H})$.

Synthesis of chromium(II) complexes: For $\left\{\mathrm{Cr}\left[\mathrm{Me}_{3} \mathrm{PhN}\left(\mathrm{SiMe}_{2}\right)\right]_{2} \mathrm{O}\right\}_{2}$ (5), ligand 2 (0.20 $\mathrm{g}, 0.50 \mathrm{mmol}$) was dissolved in 15 ml of $\mathrm{Et}_{2} \mathrm{O}$ and added dropwise to anhydrous CrCb $(0.06 \mathrm{~g}, 0.5 \mathrm{mmol})$ in 20 ml of $\mathrm{Et}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$, yielding a brown/green coloured solution. After being stirred for 24 hours at room temperature, the solvent was removed in vacuo, the residue was extracted in hexanes and filtered through Celite ${ }^{\circledR}$. Removal of the hexanes in vacuo gave violet $\left\{\mathrm{Cr}\left[\mathrm{Me}_{3} \mathrm{PhN}\left(\mathrm{SiMe}_{2}\right)\right]_{2} \mathrm{O}\right\}_{2}$. Yield: 0.20 g (89%). Single crystals were obtained by refrigeration of a hexanes solution at $-30^{\circ} \mathrm{C}$. Anal. Calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{CrOSi}_{2}: \mathrm{C}: 58.63$, H: 7.60, N: 6.22. Found: C:57.07, H: 7.71, N: 5.97. $\mu_{\text {eff }}$ $=2.38$ B.M. (298 K). Note: The elemental analysis of $\mathbf{5}$ has been repeated several times on several batches, including on single-crystals. The H and N values are always acceptable, but the C -values are consistently low from batch to batch. The C -values are improved with the addition of an oxidant but not to within 0.4% - we suspect that formation of chromium carbides (and therefore incomplete combustion) is impeding the C -analysis in this case.

To prepare complex 6, a similar procedure using CrCb and ligand $3(250 \mathrm{mg}, 0.606$ mmol), followed by a toluene extraction resulted in a dark green powder of $\left\{\mathrm{Cr}\left[\mathrm{MesNSiMe} 2 \mathrm{~N}(\mathrm{Mes}) \mathrm{SiMe}_{2} \mathrm{O}\right]\right\}_{2}\left(\mathrm{Mes}=2,4,6-\mathrm{Me}_{3} \mathrm{Ph}\right)(6)$. Yield: 227 mg (83%). Recrystallization from THF solution gave single crystals of the purple THF-adduct. Anal. Calcd. (\%) for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{CrO}_{2} \mathrm{Si}_{2}$: C: 59.73 , $\mathrm{H}: 8.10, \mathrm{~N}: 5.36$. Found: C: 59.50, $\mathrm{H}:$ 8.24, N: 5.10. $\mu_{\text {eff: }}: 2.88$ B.M.(298 K). $\left\{\mathrm{Cr}\left[\mathrm{RNSiMe} N(\mathrm{R}) \mathrm{SiMe}_{2} \mathrm{O}\right]\right\}_{2}\left(\mathrm{R}=2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{Ph}\right)(7)$ was prepared in a similar fashion via ligand $4(250 \mathrm{mg}, 0.503 \mathrm{mmol})$. Yield: 251 mg (93 \%). Anal. Calcd. (\%) for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{CrOSi}_{2}$: C: 62.88, H: 8.67, N: 5.24. Found: C: 62.49, H: 8.41, N: 5.41. $\mu_{\text {eff }}=3.80$ B.M. $(298 \mathrm{~K})$.

