Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2005
Synthesis and spectroscopic characterisation of $L^{1 c-1 e}, L^{2 b 2-e}, L^{3 b-3 d}$ and the metal complexes
isolated.

Synthesis of $\mathbf{L}^{1 \mathbf{c}}$. It was obtained as a colourless oil starting from $L^{1 b}$ and using the same procedure described for $\mathrm{L}^{4 \mathrm{c}}$ (see paper). Yield: 76\%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 1.43-1.47(2 \mathrm{H}$, m), $2.00(2 \mathrm{H}, \mathrm{br}), 2.41(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.57-2.74(16 \mathrm{H}, \mathrm{m}), 3.63(2 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 27.58,30.16,31.06,40.17,51.14,53.00,74.17$. Concentrated HClO_{4} was added to a solution of $\mathrm{L}^{\text {1c }}$ in dry EtOH to give a white precipitate. This solid was filtered off, dried under reduced pressure and crystallised from dmf/Et $\mathrm{E}_{2} \mathrm{O}$ to give the salt $\left(\mathrm{H}_{2} \mathrm{~L}^{1 \mathrm{c}}\right)\left(\mathrm{ClO}_{4}\right)_{2} \cdot d \mathrm{dmf}$. Elem. Anal.: found (calc. for $\mathrm{C}_{14} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~S}_{2}$): C, 31.20 (31.23); H, 6.15 (6.18); N, 7.84 (7.80); S, 11.85 (11.91).

Synthesis of $\mathbf{L}^{\text {1d }}$. It was obtained as a yellow solid starting from $L^{\text {1c }}$ and using the same procedure described for $\mathrm{L}^{4 \mathrm{~d}}$ (see paper). Yield: 73%. Mp: $90-92^{\circ} \mathrm{C}$. Elem. Anal.: found (calc. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{~S}_{3} \mathrm{O}_{3}$): C, 55.54 (55.50); H, 7.30 (7.09); N, 8.60 (8.44); S, 19.30 (19.33). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 1.51-1.53(2 \mathrm{H}, \mathrm{m}), 2.43(2 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}), 2.65-2.69(8 \mathrm{H}, \mathrm{m}), 2.78-2.81(8 \mathrm{H}, \mathrm{m})$, $2.84(6 \mathrm{H}, \mathrm{s}), 2.95(2 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{t}, J=8$ $\mathrm{Hz}), 8.19(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.32(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.47(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta_{\mathrm{C}} 25.08,27.18,30.35,43.49,45.19,50.80,54.63,74.39,114.84,118.88,122.90,127.91$, 129.23, 129.48, 129.58, 129.82, 134.74, 151.60. Mass Spectrum EI': m/z $497\left(\left[\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{~S}_{3} \mathrm{O}_{3}\right]^{+}\right)$.

Synthesis of $\mathbf{L}^{1 e}$. It was obtained as a yellow solid starting from $L^{1 c}$ and using the same procedure described for $\mathrm{L}^{4 \mathrm{e}}$ (see paper). Yield: 45%. M.p.: $126-127^{\circ} \mathrm{C}$. Elem. Anal: found (calc. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}$): C, 68.57 (68.68); H, 7.30 (7.54); N, 5.97 (6.16); S, 14.24 (14.10). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 1.23-1.25(2 \mathrm{H}, \mathrm{m}), 1.74-1.77(2 \mathrm{H}, \mathrm{m}), 2.46-2.49(2 \mathrm{H}, \mathrm{m}), 2.62-2.70(10 \mathrm{H}, \mathrm{m})$, 2.95-2.97 ($2 \mathrm{H}, \mathrm{m}$), $3.65(4 \mathrm{H}, \mathrm{s}), 4.54(1 \mathrm{H}, \mathrm{br}), 4.81(2 \mathrm{H}, \mathrm{s}), 7.46-7.49(2 \mathrm{H}, \mathrm{m}), 7.55-7.59(2 \mathrm{H}, \mathrm{m})$, $8.00(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.33(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.42(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 26.35$, $27.28,30.27,44.90,48.94,50.89,54.10,74.41,123.83,124.96,126.44,127.74,129.13,130.32$, 131.35. Mass Spectrum $\mathrm{EI}^{+}: \mathrm{m} / \mathrm{z} 455\left(\left[\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}\right]^{+}\right)$.

Synthesis of $\mathbf{L}^{\mathbf{2 b}}$. Acrylonitrile (5 ml) was added to a solution of $\mathrm{L}^{2 \mathrm{a}}(0.5 \mathrm{~g}, 2.2 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}: \mathrm{EtOH}(40 \mathrm{~mL}, 1: 1 \mathrm{v} / \mathrm{v})$. The mixture was refluxed for 24 hours under N_{2}. After cooling the volume of the mixture was reduced to 15 mL under reduced pressure. After 12 hours at $0^{\circ} \mathrm{C}$ a white solid formed. $\left(0.48 \mathrm{~g}, 1.7 \mathrm{mmol}, 77 \%\right.$ yield). M.p.: $84-85^{\circ} \mathrm{C}$. Elem. Anal.: found (calc. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{3}$): C, 47.85 (47.79); H, 7.51 (7.29); N, 10.18 (10.13); S, 34.52 (34.79). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$): δ_{H} 2.49-2.51 ($2 \mathrm{H}, \mathrm{m}$), 2.64-2.65 ($4 \mathrm{H}, \mathrm{m}$), 2.77-2.80 ($14 \mathrm{H}, \mathrm{m}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 16.84,26.61,27.95,29.03,50.06,52.93,118.70$.

Synthesis of $\mathbf{L}^{\mathbf{2 c}}$. It was obtained as a colourless oil starting from $L^{2 b}$ and using the same procedure described for $\mathrm{L}^{4 \mathrm{c}}$ (see paper). Yield: $87 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 1.55-1.58(2 \mathrm{H}$, m), $1.76(2 \mathrm{H}, \mathrm{br}), 2.44-2.76(20 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 26.17,28.08,28.90$, 31.04, 40.26, 52.16, 52.38 .

Synthesis of $\mathbf{L}^{2 d}$. It was obtained as a yellow solid starting from $L^{2 c}$ and using the same procedure described for $\mathrm{L}^{4 \mathrm{~d}}$ (see paper).Yield: 46%. Mp: $110-112^{\circ} \mathrm{C}$. Elem. Anal.: found (calc. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{~S}_{4} \mathrm{O}_{2}$): C, 54.64 (53.77); H, 7.88 (6.87); N, 8.00 (8.18); S, 23.52 (24.96). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 1.50-1.56(2 \mathrm{H}, \mathrm{m}), 2.35(2 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}), 2.48-2.56(8 \mathrm{H}, \mathrm{m}), 2.64-2.68(8 \mathrm{H}, \mathrm{m})$, $2.85(6 \mathrm{H}, \mathrm{s}), 2.96(2 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}), 6.15(1 \mathrm{H}, \mathrm{br}), 7.14(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.46-7.54(2 \mathrm{H}, \mathrm{m}), 8.20$ $(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 8.28(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.49(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (400 MHz ,

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2005
$\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 25.07,25.56,27.72,28.33,42.42,45.17,51.14,52.57,114.88,118.56,122.97,127.98$, $129.38,129.45,129.59,130.05,134.48,151.75$. Mass Spectrum $\mathrm{EI}^{+}: \mathrm{m} / \mathrm{z} 514\left(\left[\mathrm{C}_{23} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{~S}_{4} \mathrm{O}_{2}\right]^{+}\right)$.

Synthesis of $\mathbf{L}^{\mathbf{2 e}}$. It was obtained as a yellow solid starting from $L^{2 c}$ and using the same procedure described for $\mathrm{L}^{4 \mathrm{e}}$ (see paper). Yield: 49%. Mp.: $120-121^{\circ} \mathrm{C}$. Elem. Anal: found (calc. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{~S}_{3}$): C, 66.01 (66.33); H, 7.68 (7.28); N, 5.46 (5.95); S, 19.97 (20.43). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): δ_{H} 1.69-1.73 ($2 \mathrm{H}, \mathrm{m}$), 2.43-2.46 ($6 \mathrm{H}, \mathrm{m}$), $2.55-2.69(12 \mathrm{H}, \mathrm{m}), 2.89-2.93(2 \mathrm{H}, \mathrm{m}), 4.74(2 \mathrm{H}$, s), 7.43-7.47 ($2 \mathrm{H}, \mathrm{m}$), 7.51-7.55 ($2 \mathrm{H}, \mathrm{m}$), $7.99(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.32(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.40$ $(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 26.06,27.31,28.07,28.84,45.60,48.64,52.30,52.75$, $124.02,124.95,126.18,127.36,129.20,130.26,131.14,131.49$. Mass Spectrum $\mathrm{EI}^{+}: \mathrm{m} / \mathrm{z} 471$ $\left(\left[\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{~S}_{3}\right]^{+}\right)$.

Synthesis of $\mathbf{L}^{\mathbf{3 b}}$. It was obtained as a colourless oil starting from $\mathrm{L}^{3 \mathrm{a}}$ and using the same procedure described for $L^{4 b}$ (see paper). Yield: 83\%. Elem. Anal.: found (calc. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{SO}$): C, 56.43 (56.73); H, 8.82 (8.16); N, 18.66 (18.90); S, 10.29 (10.82). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right.$): δ_{H} 2.47-2.50 (4H, m), 2.52-2.54 (4H, m), 2.73-2.84 (12H, m), 3.47-3.52 (4H, m). ${ }^{13} \mathrm{C}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.298 \mathrm{~K}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 18.00,32.57,48.73,53.47,55.42,69.5,117.6$.

Synthesis of $\mathbf{L}^{\mathbf{3 c}}$. It was obtained as a yellow solid starting from $L^{3 b}$ and using the same procedure described for $\mathrm{L}^{4 \mathrm{c}}$ (see paper). Yield: $65 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 2.03-2.12(4 \mathrm{H}$, $\mathrm{m}), 2.73-3.87(24 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 26.23,31.11,40.09,53.65,53.87$, 54.39, 70.93.

Synthesis of $\mathbf{L}^{\text {3d }}$. It was obtained as a yellow solid starting from $\mathrm{L}^{\text {3c }}$ and using the same procedure described for $\mathrm{L}^{4 \mathrm{~d}}$ (see paper). Yield: 44%. M.p.: $82-84^{\circ} \mathrm{C}$. Elem. Anal.: found (calc. for $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{~S}_{3} \mathrm{O}_{5}$): C, 59.34 (59.19); H, 7.58 (7.06); N, 10.08 (10.90); S, 11.78 (12.47). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 1.19(4 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.51-1.56(4 \mathrm{H}, \mathrm{m}), 2.41-2.44(4 \mathrm{H}, \mathrm{m}), 2.57-2.64(4 \mathrm{H}, \mathrm{m})$, 2.75-2.77 ($4 \mathrm{H}, \mathrm{m}$), $2.86(12 \mathrm{H}, \mathrm{s}), 2.97-3.00(4 \mathrm{H}, \mathrm{m}), 3.43-3.48(4 \mathrm{H}, \mathrm{m}), 3.55(2 \mathrm{H}, \mathrm{br}), 7.16(2 \mathrm{H}, \mathrm{d}$, $J=7.2 \mathrm{~Hz}), 7.44-7.56(4 \mathrm{H}, \mathrm{m}), 8.21(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 8.31(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.50(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4$ Hz). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 25.37,26.02,42.94,45.28,52.73,54.12,54.53$, 69.91, 115.00, 118.86, 123.04, 128.03, 129.31, 129.53, 129.67, 129.99, 134.82, 151.74. Mass Spectrum $\mathrm{EI}^{+}: \mathrm{m} / \mathrm{z} 514\left(\left[\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{~S}_{3} \mathrm{O}_{5}\right]^{+}\right)$.

Synthesis of $\left[\mathbf{Z n}\left(\mathrm{L}^{1 \mathrm{c}}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}(\mathbf{3})$

To a solution of $\mathrm{L}^{1 \mathrm{c}}(40 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $5 \mathrm{~cm}^{3}$ of $\mathrm{MeCN} 56.4 \mathrm{mg}(0.15 \mathrm{mmol})$ of $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6$ $\mathrm{H}_{2} \mathrm{O}$. The resulting colourless solution was stirred for four hours at room temperature. The solvent was partially removed under reduced pressure and the product crystallised by diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapour into the remaining solution. Colourless crystals were obtained ($28 \mathrm{mg}, 0.062 \mathrm{mmol}, 41 \%$ yield). Mp.: up to $250^{\circ} \mathrm{C}$. Elem. Anal: found (calc. for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{9} \mathrm{Cl}_{2} \mathrm{Zn}$): C, 25.66 (24.99); H, 4.76 (4.58); N, 5.48 (5.30); S, 12.65 (12.13).

Synthesis of $\left[\mathrm{Cd}\left(\mathrm{L}^{1 \mathrm{c}}\right)\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)(4)$

This complex was obtained as colourless crystals using the same procedure described for 3. Yield: 51%. Mp.: $249-250^{\circ} \mathrm{C}$. Elem. Anal: found (calc. for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{~S}_{2} \mathrm{O}_{7} \mathrm{Cd}$): C, 26.73 (26.38); H, 4.55 (4.83); N, 11.21 (11.19); S, 12.45 (12.80).

Synthesis of $\left[\mathbf{H g}\left(\mathrm{L}^{2 \mathrm{c}}\right)\left(\mathrm{ClO}_{4}\right)_{2}\right]$ (5)

This complex was obtained as colourless crystals using the same procedure described for 3. Yield: 56%. Mp.: $266-267^{\circ} \mathrm{C}$. Elem. Anal: found (calc. for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{3} \mathrm{O}_{8} \mathrm{Cl}_{2} \mathrm{Hg}$): C, 19.66 (19.43); H, 3.89 (3.56); N, 4.23 (4.12); S, 14.82 (14.15).

Synthesis of $\left[\mathrm{Cd}\left(\mathrm{L}^{3 \mathrm{a}}\right)\left(\mathrm{NO}_{3}\right)_{2}\right](\mathbf{1})$

This complex was obtained as colourless crystals using the same procedure described for 3. Yield: 27%. Mp.: up to $250^{\circ} \mathrm{C}$. Elem. Anal: found (calc. for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{SO}_{7} \mathrm{Cd}$): C, 22.73 (22.52); H, 4.32 (4.25); N, 13.05 (13.13); S, 7.45 (7.51).

Synthesis of $\left[\mathrm{Cu}\left(\mathrm{L}^{4 \mathrm{a}}\right)(\mathrm{dmf})\right]\left(\mathrm{ClO}_{4}\right)_{2}(2)$

This complex was obtained as blue crystals using the same procedure described for 3. After reaction, the solvent was removed under reduced pressure and the resulting residue was crystallised by diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapours into a dmf solution. Yield: 24%. M.p.: $182-183^{\circ} \mathrm{C}$. Anal: found (calc. for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{11} \mathrm{Cl}_{2} \mathrm{Cu}$): C, 26.38 (26.60); H, 4.85 (4.81); $\mathrm{N}, 4.80$ (4.77); S, 11.15 (10.92).

Table S1. Protonation constants $(\log K)$ of $\mathrm{L}^{3 \mathrm{a}}, \mathrm{L}^{1 \mathrm{c}}, \mathrm{L}^{2 \mathrm{c}}, \mathrm{L}^{3 \mathrm{c}}$, and $\mathrm{L}^{4 \mathrm{c}}(I=0.1 \mathrm{M}, 298.1 \mathrm{~K})$.

reaction	$\mathrm{L}^{3 \mathrm{a}}$	$\mathrm{L}^{1 c}$	$\mathrm{~L}^{2 c}$	$\mathrm{~L}^{3 c}$	$\mathrm{~L}^{4 c}$
$\mathrm{~L}+\mathrm{H}^{+} \rightleftharpoons(\mathrm{HL})^{+}$	$9.14(3)$	$9.98(3)$	$9.66(1)$	$10.01(2)$	$10.11(2)$
$(\mathrm{HL})^{+}+\mathrm{H}^{+} \rightleftharpoons\left(\mathrm{H}_{2} \mathrm{~L}\right)^{2+}$	$6.80(3)$	$6.93(5)$	$5.80(1)$	$9.69(3)$	$3.19(3)$
$\left(\mathrm{H}_{2} \mathrm{~L}\right)^{2+}+\mathrm{H}^{+} \rightleftharpoons\left(\mathrm{H}_{3} \mathrm{~L}\right)^{3+}$				$7.18(3)$	
$\left(\mathrm{H}_{3} \mathrm{~L}\right)^{3+}+\mathrm{H}^{+} \rightleftharpoons\left(\mathrm{H}_{4} \mathrm{~L}\right)^{4+}$				$5.35(3)$	

(a)

(b)

Figure S1. Distribution diagrams for the systems $\mathrm{Zn}^{\mathrm{II}} / \mathrm{L}^{1 \mathrm{c}}$ (a), and $\mathrm{Cd}^{\mathrm{II}} / \mathrm{L}^{1 \mathrm{c}}$ (b) $\left(\left[\mathrm{M}^{\mathrm{II}}\right]=\right.$ $\left.\left[\mathrm{L}^{1 \mathrm{c}}\right]=1 \times 10^{-3} \mathrm{M}, 298.1 \mathrm{~K}, I=0.1 \mathrm{M}\right)$.

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2005

Figure S2. Distribution diagram for the system $\mathrm{Zn}^{\mathrm{II}} / \mathrm{L}^{2 \mathrm{c}}\left(\left[\mathrm{M}^{\mathrm{II}}\right]=\left[\mathrm{L}^{2 \mathrm{c}}\right]=1 \times 10^{-3} \mathrm{M}, 298.1\right.$ $\mathrm{K}, I=0.1 \mathrm{M})$.

(a)

(b)

Figure S3. Distribution diagrams for the systems $\mathrm{Cu}^{\mathrm{II}} / \mathrm{L}^{2 \mathrm{c}}$ (a), and $\mathrm{Hg}^{\mathrm{II}} / \mathrm{L}^{2 \mathrm{c}}$ (b) $\left(\left[\mathrm{M}^{\mathrm{II}}\right]=\right.$ $\left.\left[\mathrm{L}^{2 \mathrm{c}}\right]=1 \times 10^{-3} \mathrm{M}, T=298.1 \mathrm{~K}, I=0.1 \mathrm{M}\right)$

(a)

(b)

Figure S4. Distribution diagram for the systems $\mathrm{Zn}^{\mathrm{II} / L^{3 c}}(\mathrm{a})$, and $\mathrm{Cd}^{\mathrm{II}} / \mathrm{L}^{3 \mathrm{c}}(\mathrm{b})\left(\left[\mathrm{M}^{\mathrm{II}}\right]=\left[\mathrm{L}^{3 \mathrm{c}}\right]=1 \times\right.$ $10^{-3} \mathrm{M}, 298.1 \mathrm{~K}, I=0.1 \mathrm{M}$).

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2005

Figure S5. Changes in the UV-Vis spectrum of $\mathrm{L}^{4 \mathrm{~d}}\left[2.5 \times 10^{-5} \mathrm{M}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}), \mathrm{pH}=7.0\right]$ upon addition of increasing amounts of $\mathrm{Hg}^{\mathrm{II}}$ up to a $\mathrm{Hg}^{\mathrm{II}} / \mathrm{L}^{4 \mathrm{~d}}$ molar ratio of 2 .

Figure S6. Changes in the UV-Vis spectrum of $\mathrm{L}^{2 \mathrm{e}}\left[2.5 \times 10^{-5} \mathrm{M}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}), \mathrm{pH}=7.0\right]$ upon addition of increasing amounts of $\mathrm{Hg}^{\mathrm{II}}$ up to a $\mathrm{Hg}^{\mathrm{II}} / \mathrm{L}^{2 \mathrm{e}}$ molar ratio of 2 .

