Supporting Information

for

Comparison of Structurally Analogous Zn₂, Co₂, and Mg₂ Catalysts for the Polymerization of Cyclic Esters

Laurie E. Breyfogle, Charlotte K. Williams, Victor G. Young, Jr., Marc A. Hillmyer,* and William B. Tolman*

Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota, 55455-0431

Figure S1. Representation of the X-ray crystal structure of LZn₂Cl₃, showing all nonhydrogen atoms as 50% thermal ellipsoids.

Figure S2. Representative variable temperature ¹H NMR spectra of 1 in CD₂Cl₂ (300 Mhz).

Figure S3. Representation of the X-ray crystal structure of **2**. All atoms except hydrogens are shown as 50% thermal ellipsoids.

Figure S4. Plots of M_n (vs. polystyrene standards, diamonds) and PDI (circles) versus conversion for the polymerization of CL by (a) **2** or (b) **3**. Conditions: $[CL]_0 = 1$ M, $[\mathbf{2}]_0 = 0.025$ M, $[\mathbf{3}]_0 = 0.019$ M THF, 25 °C.

Figure S5. Dependence of (a) M_n (vs. polystyrene standards) and (b) PDI on ([CL]₀ – [CL]_t)/[cat]₀ for the polymerization of CL by **1** (squares), **2** (circles), or **3** (triangles). Conditions: [CL]₀ = 1 M, THF, 25 °C.

Figure S6. Illustrative time course for the polymerization of CL by **3** as monitored by ReactIR (PCL growth at 1206 cm⁻¹). Conditions: $[\mathbf{3}]_0 = 10 \text{ mM}$, $[\text{CL}]_0 = 1 \text{ M}$, THF, 25 °C. The fit shown is to the first order equation $(A_0 - A_\infty)\exp(-kt) + A_\infty$, and yields $k_{obs} = 3.1 \times 10^{-4} \text{ s}^{-1}$ (R = 0.9994).

Figure S7. Plot of M_n (diamonds) and PDI (circles) vs. conversion for the polymerization of LA by (a) **2** and (b) **3**. Conditions: [LA]₀ = 1 M, CH₂Cl₂, 25 °C, [**2**]₀ = 100 mM, [**3**]₀ = 200 mM.

Figure S8. Illustrative time course for the polymerization of LA by **1** as monitored by ReactIR (PLA growth at 1131 cm⁻¹ and LA decay at 1240 cm⁻¹). Conditions: $[\mathbf{1}]_0 = 5$ mM, $[\text{LA}]_0 = 1$ M, CH₂Cl₂, 25 °C. The fits shown are to the first order equation $(A_0 - A_\infty)\exp(-kt) + A_\infty$, and yield $k_{\text{obs}} = 1.8 \times 10^{-3} \text{ s}^{-1}$ (R = 0.997, PLA growth) and $k_{\text{obs}} = 1.7 \times 10^{-3} \text{ s}^{-1}$ (R = 0.999, LA decay).

Figure S9. Plot of time course for LA polymerization catalyzed by **2** using $[2]_0 = 300$ mM. The data were collected by ¹H NMR spectroscopy. Conditions: $[LA]_0 = 1$ M, CH₂Cl₂, 25 °C. The line is a simulation of the data constructed using the program KINTEKSIM and the following kinetic model:

$$A + B \xrightarrow{k_1} C$$

$$C \xrightarrow{k_2} P + B$$

$$B \xrightarrow{k_3} Q$$

where A = LA, B = M-OR (the catalytically active species), C = the adduct between M-OR and LA, P = the polymer chain (increased in length by one LA subunit), and Q = deactivated catalyst. The rate constants that yield the simulation shown are $k_1 = 300 \text{ M}^{-1}\text{s}^{-1}$, $k_{-1} = 1000 \text{ s}^{-1}$, $k_2 = 0.02 \text{ s}^{-1}$, and $k_3 = 0.0006 \text{ s}^{-1}$. Simulations that did not include the catalyst deactivation step did not accurately replicate the data at long reaction times. Simulations of data acquired using [**3**]₀ or different values for [**2**]₀ were of poorer quality and yielded inconsistent values for the rate constants. As a result, only initial rate data were analyzed as described in the text.

Figure S10. Initial rate data for the polymerization of LA by (a) **2** and (b) **3**, for the values of $[\mathbf{2}]_0$ and $[\mathbf{3}]_0$ shown. Conditions: $[LA]_0 = 1$ M, CH_2Cl_2 , 25 °C. The indicated fits are to the first order exponential $[LA]_t = \exp(-k_{obs}t)$, and yield k_{obs} values that are plotted in Figure 6.