Calix[4]phyrin based redox architectures: towards new molecular tools for electrochemical sensing.

Christophe Bucher[†]*, Charles H. Devillers[†], Jean-Claude Moutet[†]*, Jacques Pécaut[‡], Guy Royal[†], Eric Saint-Aman[†], Fabrice Thomas[§],

[†]Laboratoire d'Electrochimie Organique et de Photochimie Rédox, UMR CNRS 5630, Institut de Chimie Moléculaire de Grenoble, FR CNRS 2607, Université Joseph Fourier, BP 53, 38041 Grenoble Cédex 9, France

Fax: 0476514267; Tel: 0476514481; E-mail: christophe.bucher@ujf-grenoble.fr

[‡] DRMFC/CEA/SCIB, Laboratoire de Chimie de Coordination, 17 rue des Martyrs, 38054 Grenoble Cédex 9.

[§] Laboratoire de Chimie Biomimétique, LEDSS, UMR CNRS 5616, Université Joseph Fourier Grenoble 1, BP 53, 38041 Grenoble Cédex 9, France

-Table 1. Crystal data and structure refinement for struc. 1	p.2
-Table 2. Crystal data and structure refinement for struc. 2	p.3
-Table 3. Crystal data and structure refinement for struc. 4	p.4
-Table 4. Crystal data and structure refinement for struc. 5	p.5
-NMR Characterization of 1.(400MHz, CDCl ₃) A1: ¹ H / B1:Cosy / C1: HMQC	p.6
-NMR Characterization of 2.(400MHz, CDCl ₃) A2: ¹ H / B2:Cosy / C2: HMQC	p.9
-NMR Characterization of 3 .(400MHz, CDCl ₃) A3: ¹ H / B3:Cosy / C3: HMQC	p.12
-NMR Characterization of 4.(250MHz, CDCl ₃)	p.15
-Characterization of 1, 2, 3, 4, 5 using UV visible spectrocopy	p.16
-Spectrophotometric titration of 4 with TBABr and TEAF	p. 17
-Electrochemical sensing of TEAF. Detail of the CV and DPV curves	p.18

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume, Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected Independent reflections Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole

C40 H46 Fe N4 O 654.66 298(2) K 0.71073 A Triclinic P-1 a = 7.7327(15) A alpha = 108.78(3) deg. b = 13.530(3) A beta = 91.96(3) deg. c = 17.245(3) A gamma = 91.09(3) deg. 1706.3(6) A^3, 2 1.274 Mg/m^3 0.479 mm^-1 696 0.50 x 0.20 x 0.20 mm 2.32 to 28.76 deg. -10<=h<=10, -17<=k<=17, -18<=l<=23 10819 7633 [R(int) = 0.0176] None Full-matrix least-squares on F² 7633 / 0 / 415 1.053 R1 = 0.0493, wR2 = 0.1277 R1 = 0.0676, wR2 = 0.13900.477 and -0.287 e.A^-3

- Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions
- Volume, Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices **Reflections collected** Independent reflections Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole

C46 H42 Cl6 Fe2 N4 975.24 298(2) K 0.71073 A Monoclinic P2(1) a = 12.671(3) A alpha = 90 deg. b = 11.944(2) A beta = 112.22(3) deg. c = 15.545(3) A gamma = 90 deg. 2178.1(8) A^3, 2 1.487 Mg/m^3 1.073 mm^-1 1000 0.50 x 0.20 x 0.20 mm 1.42 to 28.90 deg. -16<=h<=13, -15<=k<=14, -17<=l<=20 13871 8981 [R(int) = 0.0160]None Full-matrix least-squares on F² 8981 / 4 / 556 1.061 R1 = 0.0435, wR2 = 0.1063R1 = 0.0525, wR2 = 0.11410.027(14)0.453 and -0.354 e.A^-3

Table 3. Crystal data and structure refinement for struc 4

- Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions
- Volume, Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected Independent reflections Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole
- C48 H48 Fe2 N4 O Zn 873.97 223(2) K 0.71073 A Tetragonal P4(1)2(1)2 a = 10.7004(15) A alpha = 90 deg. b = 10.7004(15) A beta = 90 deg. c = 34.398(7) A gamma = 90 deg. 3938.6(11) A^3, 4 1.474 Mg/m^3 1.374 mm^-1 1816 0.30 x 0.15 x 0.08 mm 1.99 to 28.99 deg. -12<=h<=14, -13<=k<=13, -21<=l<=46 16132 4838 [R(int) = 0.0214] None Full-matrix least-squares on F² 4838 / 0 / 255 1.162 R1 = 0.0312, wR2 = 0.0719R1 = 0.0342, wR2 = 0.07270.027(13)0.301 and -0.500 e.A^-3

- Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions
- Volume, Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices **Reflections collected** Independent reflections Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole
- C45 H40 Cl2 Cu Fe2 N4 882.95 293(2) K 0.71073 A Orthorhombic Pnma a = 14.7414(19) A alpha = 90 deg. b = 18.668(2) A beta = 90 deg. c = 13.5904(17) A gamma = 90 deg. 3740.0(8) A^3, 4 1.568 Mg/m^3 1.512 mm^-1 1812 0.40 x 0.20 x 0.20 mm 1.85 to 29.10 deg. -19<=h<=19, -25<=k<=18, -17<=l<=13 22287 4794 [R(int) = 0.0183]None Full-matrix least-squares on F^2 4794 / 2 / 297 1.137 R1 = 0.0393, wR2 = 0.0899 R1 = 0.0449, wR2 = 0.09261.072 and -0.757 e.A^-3

NMR Characterization of 1.(400MHz, CDCl₃) A1:¹H / B1:Cosy / C1: HMQC

٨

(B1) ¹H-¹H COSY map of 1 (CDCl₃, 400 MHz)

(C1) HMQC map of $1(CDCl_3, 400MHz)$

NMR Characterization of 2.(400MHz, CDCl₃) A2:¹H / B2:Cosy / C2: HMQC

(A2) ¹H spectrum of 2 (CDCl₃, 400 MHz).

(B2)¹H-¹H COSY map of **2** (CDCl₃, 400 MHz)

(C2) HMQC map of 2(CDCl₃, 400MHz)

11

NMR Characterization of 3.(400MHz, CDCl₃) A3:¹H / B32:Cosy / C3: HMQC

(A3) ¹H spectrum of 3 (CDCl₃, 400 MHz).

(B3) ¹H-¹H COSY map of **3** (CDCl₃, 400 MHz)

(C3) HMQC map of 3 (CDCl₃, 400MHz)

NMR Characterization of 4 ¹H NMR spectrum of 4 (CDCl₃, 250 mHz)

Spectrophotometric titration of 4 with Tetrabutylammonium bromide and Tetraethylammonium fluoride in CH₂Cl₂ (0.1M tetrabulylammonium perchlorate)

After the addition of 2.34 equivalent of TEAF the waves corresponding to the oxydation of the ferrocene in the free complexe and with the fluoride become both irrversible.