Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

Synthesis, Characterisation and Theoretical Studies of Amidinato-Indium(I) and

Thallium(I) Complexes: Isomers of Neutral Group13 Metal(I) Carbene Analogues

Cameron Jones,* Peter C. Junk, Jamie A. Platts, Daniel Rathmann and Andreas Stasch

SUPPLEMENTARY MATERIAL

Figure S1 Optimised geometry of [In {PhNC(H)NPh}]. {PhNC(H)N(H)Ph}

Computational Details

All DFT calculations were carried out using Gaussian03,¹ employing Adamo and Barone's mPW1PW91 functional² with a basis set consisting of 6-31+G(d) on C, N, and H³ along with Stevens, Basch, and Krauss's basis set and ECP on In,⁴ *i.e.* similar to that used in a recent study of indium diazadiene complexes carried out by Schoeller et al.⁵ Population analysis employed Weinhold and co-workers' NBO scheme.⁶ Calculated binding energy included the standard counterpoise correction for BSSE.⁷

Gaussian 03, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chem3stry 2005

K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
C. Adamo, and V. Barone, J. Chem. Phys. 1998, 108, 664.
(a) R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724;

- (b) M. S. Gordon, *Chem. Phys. Lett.*, 1980, **76**, 163; (c) T. Clark, J. Chandrasekhar and G. W. Spitznagel, *J. Comput.Chem.*, 1983, **4**, 294.
- (a) W. J. Stevens, H. Basch and M. Krauss, *J. Chem. Phys.*, 1984, 81, 6026;
 (b) W. J. Stevens, M. Krauss, H. Basch and P. Jasien, *Can. J. Chem.*, 1992, 70, 612;
 (c) T. Cundari and W. J. Stevens, *J. Chem. Phys.*, 1993, 98, 5555.
- 5. W. W. Schoeller and S. Grogoleit, *Dalton Trans.*, 2002, 405.
- 6. A. E. Reed, L. A. Curtiss, F. Weinhold, *Chem. Rev.*, 1988, **88**, 899.
- 7. S. F. Boys, F. Bernardi, *Mol. Phys.*, 1970, **19**, 553.

2. 3.

Cartesian coordinates of optimised structures

comp	ound 6a:	scf	energy	-800	.663203
In	-1.1531	L69	-0.54	15485	2.092009
Ν	-0.2170)79	1.14	3135	0.671577
С	0.7600)58	0.36	50251	0.250483
Н	1.5750	530	0.74	7255	-0.373456
Ν	0.7473	393	-0.89	1845	0.671023
С	1.6892	263	-1.83	86013	0.273297
С	1.9880)39	-2.89	3806	1.147117
С	2.9090	076	-3.87	2925	0.794085
С	3.5568	326	-3.82	23974	-0.440100
С	3.2563	308	-2.78	86926	-1.321337
С	2.3269	978	-1.80	9071	-0.979492
Н	1.4939	957	-2.92	28425	2.113120
Н	3.1251	L09	-4.67	7650	1.489716
Н	4.2760	98	-4.58	37642	-0.714908
Н	3.7369	946	-2.74	15317	-2.293839
Н	2.0758	353	-1.03	86522	-1.698797
С	-0.3520)27	2.46	59878	0.273696
С	0.0698	375	2.94	15595	-0.980322
С	-0.0989	939	4.28	3933	-1.322496
С	-0.7091	L29	5.17	3782	-0.440348
С	-1.1545	500	4.70	4206	0.795105
С	-0.9793	365	3.37	1517	1.148480
Η	0.5068	394	2.26	51436	-1.700215
Η	0.2354	169	4.62	29008	-2.295942
Н	-0.8451	L47	6.21	3929	-0.715403
Н	-1.6388	322	5.38	31464	1.491459
Н	-1.3168	331	3.01	1662	2.115488

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chenfistry 2005

compo	und	6b:	scf	energ	ıy .	-800	.6479	627			
In	-0.	424	565	-0.	521	418	0	.00000	00		
Ν	-1.	465	272	-2.	550	824	0	.00000	00		
Ν	-3.	720	383	-1.	827	916	0	.00000	00		
С	-2.	802	787	-2.	741	374	0	.00000	00		
С	1.	088	0.5.6	-5	919	270	0	.00000	0.0		
C	-0	635'	778	-3	698	289	0	00000	00		
C	_3	345	030	-0	495	489	0	00000	00		
C	-2	768	593	2	280	102	0	00000	00		
U U	_2.	562	063	2.	200	303	0	.00000	00		
и П	_3	152	005 015	-3	777	552	0	.00000	00		
11 LJ	-J.	752	915 015	-5.	776	521	0	.00000			
п	⊥. ○	101	04J 122	-0.	261	0.24	1	20500			
C	-0.	101	433	-4.	201	931 031	1	20500			
C	-0.	. 194' CEO	433	-4.	201	740 740	1	20000	17		
C	0.	(E0)	001	-5.	202	742	1	2030.	17		
C	0.	1 7 7	001	-5.	303	142	-1	.2038.			
C	-3.	1 7 7	099	0.	217	062	-1	.2080.	34		
C	-3.	\perp / / /	099	0.		062	Ţ	.2080.	34		
C	-2.	903	616	⊥.	585	752	-1	.2020	12		
С	-2.	903	616	⊥.	585	/52	T	.2020	12		
H	-0.	534	135	-3.	827	646	-2	.14014	41		
Н	-0.	534	135	-3.	827	646	2	.14014	41		
Н	-3.	311	648	-0.	316	079	-2	.14371	13		
Н	-3.	311	648	-0.	316	079	2	.14371	13		
Н	-2.	802	599	2.	111.	528	-2	.14642	23		
Н	-2.	802	599	2.	111.	528	2	.14642	23		
Н	0.	986	371	-5.	789	459	-2	.14676	67		
Н	0.	986	371	-5.	789	459	2	.14676	67		
[In {PhN	JC(H)NPh	}].{Ph	NC(H)N	V(H)F	₽h}:	scf e	nergy	-	-1412	.640524
In	-0.	424	653	-0.	548	059	0	.00000	00		
Ν	1.	715	632	2.	854	613	0	.00000	00		
Ν	3.	934	500	1.	992	291	0	.00000	00		
Ν	-1.	430	921	-2.	520	918	0	.00000	00		
Ν	-3.	711	215	-1.	835	805	0	.00000	00		
С	3.	078	576	2.	946	870	0	.00000	00		
С	-2.	774	854	-2.	730	051	0	.00000	00		
С	0.	862	650	3.	994	175	0	.00000	00		
С	-0.	828	259	6.	226	195	0	.00000	0.0		
С	3.	499	631	0.	658	587	0	.00000	0.0		
С	2.	792	023	-2.	076	999	0	.00000	0.0		
С	1.	079	275	-5.	935	546	0	.00000	0.0		
C	-0	616	558	-3	684	873	0	00000	0.0		
C	-3	354	183	-0	493	873	0	00000	00		
C	-2	775	004	2	287	104	0	00000	00		
н	-1	483	642	7	092	431	0	00000	00		
н	2	529	803		130	561	0	00000	00		
н	2.	291	302	1	930	658	0	00000	00		
и Ц	-2	551	100	⊥. ג	310	637	0	00000	00		
и П	_3	103	100 979	-3	773	799	0	.00000	00		
11 U	-J. 1	724	600	-5.	001	603	0	.00000			
ц	1. 2	110	0 7 0 1 7 5	-0. ว	072	780	0	00000			
п С	э. ∩	120	302 71)	с. л	<i>912</i>	102 220	U 1	21020	00		
C	0.	439.	205 205	4. 1	555	230 220	1	21020	03		
C	0.	439.	JOJ 110	4.	500	000 100	-1	2002	U J 1 1		
C	-0.	404.	⊥⊥ŏ 1 1 0	э. г	000	403 102	-1	.20934	₩⊥ ⁄1 1		
C	-0.	404.	ΤΤΩ	5.	000	4♂≾ ⊏1 ⁄	1	.20934	41 20		
C	3.	321	268	-0.	037	514	-1	.20952	29		
C	<u>ح</u>	321	268	-0.	037	5⊥4 222	1	.20952	29		
C	2.	. 972	243	-1.	3893	336	-1	.20534	46		
С	2.	972	243	-1.	389	336	1	.20534	46		

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chen4stry 2005

С	-0.186935	-4.258092	1.207484
С	-0.186935	-4.258092	-1.207484
С	0.652976	-5.373976	1.207001
С	0.652976	-5.373976	-1.207001
С	-3.192453	0.219378	-1.210072
С	-3.192453	0.219378	1.210072
С	-2.916298	1.590575	-1.203969
С	-2.916298	1.590575	1.203969
Н	-0.520715	-3.817914	-2.143412
Н	-0.520715	-3.817914	2.143412
Н	-3.330457	-0.313415	-2.146716
Н	-3.330457	-0.313415	2.146716
Н	3.481142	0.489315	-2.145974
Н	3.481142	0.489315	2.145974
Н	0.774614	4.111694	-2.143293
Н	0.774614	4.111694	2.143293
Н	-0.728175	6.101194	-2.151503
Н	-0.728175	6.101194	2.151503
Н	-2.812677	2.116750	-2.149178
Η	-2.812677	2.116750	2.149178
Η	2.849292	-1.913474	-2.149589
Η	2.849292	-1.913474	2.149589
Н	0.974856	-5.806012	-2.150715
Н	0.974856	-5.806012	2.150715

NBO details for the In atom in compound **6b**

1	In	1	S	Cor(45	3) 1.99968	-4.60052
2	In	1	S	Val(55	3) 1.92206	-0.31562
3	In	1	S	Ryd(65	3) 0.00175	1.36623
4	In	1	S	Ryd(75	3) 0.00001	96.03324
5	In	1	рх	Cor(4p) 1.99987	-3.04162
6	In	1	px	Val(5p) 0.09272	0.01517
7	In	1	px	Ryd(6p	o) 0.00076	0.54730
8	In	1	рх	Ryd(7p	o) 0.00005	3.47247
9	In	1	ру	Cor(4p) 1.99958	-3.03326
10	In	1	ру	Val(5p	o) 0.14354	0.08715
11	In	1	ру	Ryd(6p	o) 0.00098	0.70394
12	In	1	ру	Ryd(7p	o) 0.00006	3.44815
13	In	1	pz	Cor(4p) 1.99993	-3.04347
14	In	1	pz	Val(5p	o) 0.06481	-0.02998
15	In	1	pz	Ryd(6p	o) 0.00032	0.41738
16	In	1	pz	Ryd(7p	o) 0.00001	3.44876
17	In	1	dxy	Cor(4c	l) 1.99829	-0.75919
18	In	1	dxy	Ryd(5c	l) 0.00021	1.02920
19	In	1	dxy	Ryd(6c	l) 0.00002	2.98693
20	In	1	dxz	Cor(4c	l) 1.99953	-0.76535
21	In	1	dxz	Ryd(5c	l) 0.00049	0.79689
22	In	1	dxz	Ryd(6c	l) 0.00002	2.87448
23	In	1	dyz	Cor(4c	l) 1.99944	-0.76082
24	In	1	dyz	Ryd(5c	l) 0.00044	0.77187
25	In	1	dyz	Ryd(6c	l) 0.00001	2.85103
26	In	1	dx2y2	Cor(4c	l) 1.99782	-0.75797
27	In	1	dx2y2	Ryd(5c	l) 0.00029	1.11766
28	In	1	dx2y2	Ryd(6c	l) 0.00003	3.06794
29	In	1	dz2	Cor(4c	l) 1.99878	-0.76370
30	In	1	dz2	Ryd(5c	l) 0.00024	0.96060
31	In	1	dz2	Ryd(6c	l) 0.00002	2.94141

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chenfistry 2005

Atom	No	Charge	Core	Valence	Rydberg	Total		
 In	1	0.77826	45.99291	2.22313	0.00570	48.22174		
 Atom	Atom No Natural Electron Configuration							
In	1	[core] 5S(1.92) 5p(0.30)						