Analysis of the GED pattern on the assumption that the vapour species is Me₂(H)N·GaH₃

The MP2/6-311++G(df,p) calculations justify the assumption of local C_{3v} symmetry for the GaH₃ and each of the dimensionally equivalent CH₃ groups, the C_3 axis of which is taken to coincide with the C–N bond. In addition to the five bond distances Ga–N, Ga–H, N–C, N–H and C–H, seven angles (as specified in Table S2 of the supplementary information) have then been used to define the structure. The results of the MP2/6-311+G(df,p) calculations were brought into play as restraints on the parameters that alone did not yield to satisfactory refinement (Table S3), and the SARACEN method,¹¹ as incorporated in the ed@ed program,¹⁹ was employed to enable free refinement of as many geometric and vibrational parameters as possible. Angles defining twisting of GaH₃ about the Ga–N bond and of CH₃ about each of the C–N bonds, as well as rocking of the GaH₃ group returned values and estimated standard deviations (e.s.ds) effectively set by the restraints, indicating that the experimental data provided no additional information about these parameters. Accordingly, the relevant angles were simply fixed at the calculated values. With appropriate restraints in place, most of the significant amplitudes yielded to refinement; those determined only by the restraints were subsequently assigned values tied to the refined amplitudes of related vectors.

parameter	basis set/method						
	6-31G*/HF	6-31G*/MP2	6-311G(d,p)/ MP2	6-311+G(d,p)/ MP2	6-311G(df,p)/ MP2	6-311+G(df,p)/ MP2	
r(Ga–N)	213.4	211.9	214.9	215.2	213.7	213.9	
r(Ga–H4)	158.8	159.8	158.8	158.8	159.2	159.2	
<i>r</i> (Ga–H5)	158.9	159.8	158.7	158.7	159.1	159.1	
<i>r</i> (N–H)	100.4	101.6	101.1	101.4	101.3	101.3	
<i>r</i> (N–C)	146.8	147.5	147.3	147.3	147.0	147.0	
<h4-ga-n< td=""><td>99.1</td><td>97.9</td><td>97.6</td><td>97.5</td><td>97.8</td><td>97.6</td></h4-ga-n<>	99.1	97.9	97.6	97.5	97.8	97.6	
<h5–ga–n< td=""><td>99.8</td><td>100.0</td><td>99.1</td><td>98.9</td><td>99.0</td><td>97.6</td></h5–ga–n<>	99.8	100.0	99.1	98.9	99.0	97.6	
<ga-n-c< td=""><td>111.5</td><td>110.9</td><td>111.4</td><td>111.5</td><td>111.4</td><td>111.4</td></ga-n-c<>	111.5	110.9	111.4	111.5	111.4	111.4	
<c-n-c< td=""><td>112.2</td><td>111.2</td><td>111.6</td><td>111.6</td><td>111.6</td><td>111.6</td></c-n-c<>	112.2	111.2	111.6	111.6	111.6	111.6	
<h-n-c< td=""><td>108.3</td><td>108.3</td><td>108.3</td><td>108.2</td><td>108.5</td><td>108.5</td></h-n-c<>	108.3	108.3	108.3	108.2	108.5	108.5	

Table S1(a). Calculated Optimised Molecular Geometry for Me₂(H)N·GaH₃ Using *Ab Initio* Methods and Various Basis Sets (Distances in pm, Angles in deg).

parameter	basis set				
	6-31G*	6-31G(d,p)	6-311G(d,p)		
r(Ga–N)	211.3	210.8	215.5		
r(Ga–H4)	157.7	158.3	157.9		
<i>r</i> (Ga–H5)	157.8	158.3	157.9		
<i>r</i> (N–H)	102.0	101.8	101.7		
r(N–C)	147.2	147.1	147.1		
<h(4)–ga–n< td=""><td>98.3</td><td>98.4</td><td>98.4</td></h(4)–ga–n<>	98.3	98.4	98.4		
<h(5)–ga–n< td=""><td>99.6</td><td>99.1</td><td>98.7</td></h(5)–ga–n<>	99.6	99.1	98.7		
<ga-n-c< td=""><td>110.9</td><td>111.1</td><td>111.6</td></ga-n-c<>	110.9	111.1	111.6		
<c-n-c< td=""><td>112.4</td><td>112.5</td><td>112.4</td></c-n-c<>	112.4	112.5	112.4		
<h-n-c< td=""><td>108.6</td><td>108.7</td><td>108.5</td></h-n-c<>	108.6	108.7	108.5		

Table S1(b). Calculated Optimised Molecular Geometry for Me₂(H)N·GaH₃ Using a DFT (B3PW91) Model and Various Basis Sets (Distances in pm, Angles in deg).

Table S2. Least-squares correlation matrix (×100) for GED structure refinement of $[Me_2NGaH_2]_2$.^{*a*}

	p_5	p_6	k_1^{b}	k_2^{b}
p_1	-59	53		
u_2			69	72
k_1^{b}				62

^{*a*} Only elements with absolute values >50% are listed.

^b Scale factor.