Structural Diversity in Iron(II) Complexes of 2,6-Di(pyrazol-1-yl)pyridine and 2,6-Di(3-methylpyrazol-1-yl)pyridine

Jérôme Elhaïk, Colin A. Kilner and Malcolm A. Halcrow*.
School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, U.K. LS2 9JT.
Email: M.A.Halcrow@chem.leeds.ac.uk

Supplementary Information

Synthesis and crystal structure determinations of $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot \mathbf{4 C H} \mathbf{3} \mathbf{C N}$
Table S1 Experimental details for the single crystal structures of $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}$
Synthesis and crystal structure determinations of $\left[\mathrm{Fe}\left(\mathrm{L}^{\mathbf{2}}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
Table S2 Experimental details for the single crystal structures of $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
Fig. S1 View of the complex dication in the crystal structure of $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}$ at 250 K , showing the atom numbering scheme employed.

Table S3 Selected bond lengths and angles $\left(\AA,{ }^{\circ}\right)$ for $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}$.
Table S4 Selected bond lengths and angles $\left(\AA,{ }^{\circ}\right)$ for $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$.
Table S5 Selected structural parameters $\left(\AA,{ }^{\circ}\right)$ for $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}$ and $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$, used to monitor their spin states at different temperatures.

Fig. S2 Plot of the variation of the $\mathrm{Fe}-\mathrm{N}$ bond lengths with temperature in $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}$ and $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$.

Table S6 C-H...I hydrogen bond distances and angles $\left(\AA,{ }^{\circ}\right)$ in $\left[\mathrm{Fe}\left(\mathrm{L}^{1}\right)_{2}\right] \mathrm{I}_{0.5}\left[\mathrm{I}_{3}\right]_{1.5}(\mathbf{1})$.

Synthesis and crystal structure determinations of $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot \mathbf{4 C H} \mathbf{H}_{3} \mathbf{C N}$

Iron(II) tetrafluoroborate hexahydrate $\left(0.11 \mathrm{~g}, 3.1 \times 10^{-4} \mathrm{~mol}\right)$ and 2,6-di(3-methylpyrazol-1-yl)pyridine $\left(0.15 \mathrm{~g}, 6.3 \times 10^{-}\right.$ ${ }^{4} \mathrm{~mol}$) were stirred in acetonitrile $\left(50 \mathrm{~cm}^{3}\right)$ at room temperature until all the solid had dissolved. The resultant yellow solution was concentrated to $5 \mathrm{~cm}^{3}$ and filtered. Slow diffusion of diethyl ether vapour into this solution yielded mustard yellow crystals, which decomposed to a solvent-free powder upon drying. Yield $0.19 \mathrm{~g}, 86 \%$. Found: C, 44.1; H, 3.9; N, 19.8%. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{FeN}_{10}: \mathrm{C}, 44.1 ; \mathrm{H}, 3.7 ; \mathrm{N}, 19.8 \%$. Electrospray mass spectrum m/z $=267\left[{ }^{56} \mathrm{FeL}_{2}\right]^{2+}, 240$ $[\mathrm{L}+\mathrm{H}]^{+}$.

Experimental details for the structure determinations of $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}$ are given in Table S1. Their airsensitivity meant that the crystals used decomposed between measurements. Hence, while the same crystal was used for the structure determinations at 100 and 200 K , two different crystals were required for the 150 and 250 K measurements. These latter two crystals, at 150 and 250 K , were of the opposite hand to the crystal used at 100 and 200 K . An attempted data collection at 300 K failed because the crystal decomposed. One of the two BF_{4}^{-}anions, $\mathrm{B}(43)-\mathrm{F}(47)$, is disordered at all four temperatures. At 200 and 250 K this was modelled over three sites labelled 'A' (occupancy 0.4), 'B' (occupancy 0.4) and ' C ' (occupancy 0.2). At 100 and 150 K only two disorder sites for this ion were located, which were labelled 'A' (occupancy 0.6) 'B' (occupancy 0.4). These were modelled using the refined restraints $\mathrm{B}-\mathrm{F}=1.38(2)$ and $1,3-\mathrm{F} . . \mathrm{F}=$ $2.25(2) \AA$ at 150 K , and $\mathrm{B}-\mathrm{F}=1.39(2)$ and $1,3-\mathrm{F} \ldots \mathrm{F}=2.27(2) \AA$ at all the other temperatures. At all temperatures, all nonH atoms with occupancy >0.5 were refined anisotropically. All H atoms were placed in calculated positions and refined using a riding model, with the methyl group torsions allowed to refine freely.

Table S1 Experimental details for the single crystal structures of $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}\left(\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{FeN}_{14}, M_{\mathrm{r}} 872.25\right.$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, Z=4$).

$T(\mathrm{~K})$	$100(2)$	$150(2)$	$200(2)$	$250(2)$
$a(\AA)$	$11.2572(1)$	$11.3871(1)$	$11.5476(1)$	$11.6508(1)$
$b(\AA)$	$13.5578(1)$	$13.6181(1)$	$13.6803(1)$	$13.7476(1)$
$c(\AA)$	$26.1701(2)$	$26.2355(3)$	$26.3236(2)$	$26.4113(3)$
$V\left(\AA^{3}\right)$	$3994.16(6)$	$4068.36(7)$	$4158.46(6)$	$4230.31(7)$
$\mu($ Mo-K $\alpha)\left(\mathrm{mm}^{-1}\right)$	0.461	0.453	0.443	0.435
Measured reflections	65112	67255	80961	70076
Independent reflections	9152	9331	9499	9695
$R_{\text {int }}$	0.078	0.072	0.052	0.091
$R(F)^{\mathrm{a}}$	0.034	0.041	0.037	0.042
$\mathrm{w}\left(F^{2}\right)^{\mathrm{b}}$	0.089	0.107	0.105	0.123
Goodness of fit	1.033	1.026	1.025	1.047
Flack parameter	$-0.025(11)$	$-0.017(14)$	$-0.013(12)$	$-0.014(15)$
$\left[\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right] / \Sigma\left\|F_{\mathrm{o}}\right\|$	${ }^{\mathrm{b}} w R=\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right) / \Sigma w F_{\mathrm{o}}{ }^{4}\right]^{1 / 2}$			

Synthesis and crystal structure determinations of $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$

A mixture of iron(II) perchlorate hexahydrate $\left(0.11 \mathrm{~g}, 3.1 \times 10^{-4} \mathrm{~mol}\right)$ and 2,6-di(3-methylpyrazol-1-yl)pyridine $\left(0.15 \mathrm{~g}, 6.3 \times 10^{-4} \mathrm{~mol}\right)$ in acetone $\left(50 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 30 mins . This gave a yellow solution, that was concentrated to $5 \mathrm{~cm}^{3}$ and filtered. Slow diffusion of diethyl ether vapour into this solution yielded mustard yellow crystals, which decomposed to a solvent-free powder upon drying. Yield $0.15 \mathrm{~g}, 64 \%$. Found: C, 42.6; H, 3.6; N, 19.3%. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{FeN}_{10} \mathrm{O}_{8}$: C, 42.6; H, 3.6; N, 19.1 \%. Electrospray mass spectrum $\mathrm{m} / \mathrm{z}=267\left[{ }^{56} \mathrm{FeL}_{2}\right]^{2+}, 240[\mathrm{~L}+\mathrm{H}]^{+}$. CAUTION although we have experienced no difficulties when handling this compound, metal-organic perchlorates are potentially explosive and should be handled with due care in small quantities.

Experimental details for the structure determinations of $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ are given in Table S2. Their air-sensitivity meant that the crystals used decomposed between measurements. For that reason, different crystals were used for all four structure determinations. An attempted data collection at 300 K failed because the crystal decomposed. At all the temperatures examined, both ClO_{4}^{-}anions and the acetone solvent molecule are disordered. The disordered model used for the anions was the same at all four temperatures. Anion $\mathrm{Cl}(38)-\mathrm{O}(42)$ was modelled in all four structures over two equally occupied sites, labelled ' A ' and ' B ', while ion $\mathrm{Cl}(43)-\mathrm{O}(47)$ was modelled using three partial anion sites labelled 'A' (occupancy 0.35), 'B' (occupancy 0.35) and ' C ' (occupancy 0.30). The following restraints were applied to both anions: $\mathrm{Cl}-\mathrm{O}=1.43(2)$ and $1,3-\mathrm{O} \ldots \mathrm{O}=2.34(2) \AA$ at $250 \mathrm{~K} ; \mathrm{Cl}-\mathrm{O}=$ $1.44(2)$ and $1,3-\mathrm{O} \ldots \mathrm{O}=2.35(2) \AA$ at 150 and 200 K ; and $\mathrm{Cl}-\mathrm{O}=1.45(2)$ and $1,3-\mathrm{O} \ldots \mathrm{O}=2.37(2) \AA$ at 100 K . The acetone molecule $\mathrm{C}(48)-\mathrm{O}(51)$ was disordered over two equally occupied sites ' A ' and ' B ' at 200 and 250 K , while three distinct sites were resolvaed at lower temperatures, labelled 'A', 'B' and ' C '. These were refined with relative occupancies $0.40: 0.40: 0.20$ at 150 K , and $0.45: 0.45: 0.10$ at 100 K . The following refined restraints were applied to this molecule: at $250 \mathrm{~K}, \mathrm{C}-\mathrm{C}=1.49(2), \mathrm{C}=\mathrm{O}=1.24(2)$ and $1,3-\mathrm{C} \ldots \mathrm{O}=2.36(2) \AA$; at $200 \mathrm{~K}, \mathrm{C}-\mathrm{C}=$ $1.48(2), \mathrm{C}=\mathrm{O}=1.25(2)$ and $1,3-\mathrm{C} \ldots \mathrm{O}=2.38(2) \AA$; at $150 \mathrm{~K}, \mathrm{C}-\mathrm{C}=1.49(2), \mathrm{C}=\mathrm{O}=1.23(2)$ and $1,3-\mathrm{C} \ldots \mathrm{O}=$ $2.39(2) \AA$; and at $100 \mathrm{~K}, \mathrm{C}-\mathrm{C}=1.49(2), \mathrm{C}=\mathrm{O}=1.26(2)$ and $1,3-\mathrm{C} \ldots \mathrm{O}=2.40(2) \AA$. At all temperatures, all crystallographically ordered non- H atoms were refined anisotropically, while all H atoms were placed in calculated positions and refined using a riding model, with the methyl group torsions allowed to refine freely.

Table S2 Experimental details for the single crystal structures of $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\left(\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{FeN}_{10} \mathrm{O}_{9}, M_{\mathrm{r}}\right.$ 791.40 , monoclinic, space group $C 2 / c, Z=8$).

$T(\mathrm{~K})$	$100(2)$	$150(2)$	$200(2)$	$250(2)$
$a(\AA)$	$22.7743(3)$	$22.8777(2)$	$23.1702(4)$	$23.3113(3)$
$b(\AA)$	$10.9586(2)$	$11.0240(1)$	$11.1910(2)$	$11.2528(2)$
$c(\AA)$	$28.4036(4)$	$28.3914(3)$	$28.3275(5)$	$28.4066(4)$
$\beta\left({ }^{\circ}\right)$	$106.1525(9)$	$106.3318(7)$	$107.0868(9)$	$107.3076(8)$
$V\left(\AA^{3}\right)$	$6809.00(18)$	$6871.48(11)$	$7021.0(2)$	$7114.13(19)$
$\mu\left(\mathrm{Mo}^{2}-\mathrm{K}_{\alpha}\right)\left(\mathrm{mm}^{-1}\right)$	0.668	0.662	0.648	0.640
Measured reflections	51437	48139	27294	35705
Independent reflections	7823	7909	7625	8106
$R_{\text {int }}$	0.123	0.090	0.080	0.183
$R(F)^{\mathrm{a}}$	0.054	0.062	0.068	0.085
$w R\left(F^{2}\right)^{\mathrm{b}}$	0.165	0.196	0.205	0.256
Goodness of fit	1.042	1.109	1.045	1.042
${ }^{\mathrm{a}} R=\Sigma\left[\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right] / \Sigma\left\|F_{\mathrm{o}}\right\|$	${ }^{\mathrm{b}} w R=\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right) / \Sigma w F_{\mathrm{o}}^{4}\right]^{1 / 2}$			

Fig. S1 View of the complex dication in the crystal structure of $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}$ at 250 K , showing the atom numbering scheme employed. All H atoms have been omitted, and thermal ellipsoids are at the 35% probability level. The complex dication in $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ is visually almost identical to the one here, and uses the same atom numbering scheme.

Table S3 Selected bond lengths and angles $\left(\AA,{ }^{\circ}\right)$ for $\left[\operatorname{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}$. The angles ' ϕ ' and ' θ ' are defined in Scheme 1.

$T(\mathrm{~K})$	100	150	200	250
$\mathrm{Fe}(1)-\mathrm{N}(2)$	$1.9107(16)$	$1.9696(19)$	$2.0627(16)$	$2.102(2)$
$\mathrm{Fe}(1)-\mathrm{N}(9)$	$2.0090(17)$	$2.047(2)$	$2.1220(17)$	$2.155(2)$
$\mathrm{Fe}(1)-\mathrm{N}(15)$	$2.0134(17)$	$2.066(2)$	$2.1501(17)$	$2.184(2)$
$\mathrm{Fe}(1)-\mathrm{N}(20)$	$1.9084(17)$	$1.957(2)$	$2.076(2)$	$2.112(2)$
$\mathrm{Fe}(1)-\mathrm{N}(27)$	$1.9982(16)$	$2.026(2)$	$2.129(2)$	$2.160(2)$
$\mathrm{Fe}(1)-\mathrm{N}(33)$	$2.0055(17)$	$2.051(2)$	$2.1401(18)$	$2.177(2)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(9)$	$79.45(7)$	$77.88(8)$	$75.58(6)$	$74.69(8)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(15)$	$79.82(7)$	$78.02(8)$	$75.37(6)$	$74.37(8)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(20)(\phi)$	$177.20(7)$	$177.13(9)$	$176.48(7)$	$176.52(8)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(27)$	$100.58(7)$	$102.04(10)$	$106.57(8)$	$107.49(9)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(33)$	$99.97(7)$	$101.27(9)$	$103.78(7)$	$104.57(8)$
$\mathrm{N}(9)-\mathrm{Fe}(1)-\mathrm{N}(15)$	$159.27(7)$	$155.90(8)$	$150.95(6)$	$149.06(8)$
$\mathrm{N}(9)-\mathrm{Fe}(1)-\mathrm{N}(20)$	$103.29(7)$	$104.85(8)$	$107.61(7)$	$108.39(8)$
$\mathrm{N}(9)-\mathrm{Fe}(1)-\mathrm{N}(27)$	$91.05(7)$	$91.68(9)$	$93.46(7)$	$94.23(9)$
$\mathrm{N}(9)-\mathrm{Fe}(1)-\mathrm{N}(33)$	$91.52(7)$	$92.09(8)$	$93.28(7)$	$93.67(8)$
$\mathrm{N}(15)-\mathrm{Fe}(1)-\mathrm{N}(20)$	$97.44(7)$	$99.26(8)$	$101.44(7)$	$102.55(8)$
$\mathrm{N}(15)-\mathrm{Fe}(1)-\mathrm{N}(27)$	$92.48(7)$	$93.04(9)$	$94.40(7)$	$94.81(9)$
$\mathrm{N}(15)-\mathrm{Fe}(1)-\mathrm{N}(33)$	$92.31(7)$	$92.86(8)$	$93.93(6)$	$94.19(8)$
$\mathrm{N}(20)-\mathrm{Fe}(1)-\mathrm{N}(27)$	$80.04(7)$	$78.90(11)$	$74.97(9)$	$74.18(10)$
$\mathrm{N}(20)-\mathrm{Fe}(1)-\mathrm{N}(33)$	$79.50(7)$	$77.87(9)$	$74.78(7)$	$73.83(8)$
$\mathrm{N}(27)-\mathrm{Fe}(1)-\mathrm{N}(33)$	$159.42(7)$	$156.66(10)$	$149.64(9)$	$147.94(9)$
θ	$89.65(2)$	$89.69(2)$	$89.40(2)$	$89.53(3)$

Table S4 Selected bond lengths and angles $\left(\AA,{ }^{\circ}\right)$ for $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$. The angles ' ϕ ' and ' θ ' are defined in Scheme 1.

$T(\mathrm{~K})$	100	150	200	250
$\mathrm{Fe}(1)-\mathrm{N}(2)$	$1.900(2)$	$1.933(3)$	$2.087(3)$	$2.112(3)$
$\mathrm{Fe}(1)-\mathrm{N}(9)$	$1.989(2)$	$2.016(3)$	$2.156(3)$	$2.182(3)$
$\mathrm{Fe}(1)-\mathrm{N}(15)$	$2.006(2)$	$2.026(3)$	$2.150(3)$	$2.170(3)$
$\mathrm{Fe}(1)-\mathrm{N}(20)$	$1.905(2)$	$1.945(3)$	$2.086(3)$	$2.117(3)$
$\mathrm{Fe}(1)-\mathrm{N}(27)$	$2.007(2)$	$2.029(3)$	$2.139(3)$	$2.161(3)$
$\mathrm{Fe}(1)-\mathrm{N}(33)$	$2.002(2)$	$2.036(3)$	$2.170(3)$	$2.204(3)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(9)$	$80.00(9)$	$79.25(12)$	$74.40(11)$	$73.51(12)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(15)$	$79.86(9)$	$79.07(12)$	$74.65(11)$	$74.24(12)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(20)(\phi)$	$177.98(10)$	$178.08(12)$	$176.29(10)$	$176.10(12)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(27)$	$99.80(9)$	$101.71(11)$	$108.86(11)$	$110.10(12)$
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(33)$	$100.71(9)$	$100.94(11)$	$102.19(10)$	$102.45(12)$
$\mathrm{N}(9)-\mathrm{Fe}(1)-\mathrm{N}(15)$	$159.76(10)$	$158.19(13)$	$148.93(12)$	$147.65(14)$
$\mathrm{N}(9)-\mathrm{Fe}(1)-\mathrm{N}(20)$	$101.96(10)$	$102.60(12)$	$107.10(12)$	$107.86(13)$
$\mathrm{N}(9)-\mathrm{Fe}(1)-\mathrm{N}(27)$	$90.58(9)$	$90.73(11)$	$91.00(11)$	$91.18(12)$
$\mathrm{N}(9)-\mathrm{Fe}(1)-\mathrm{N}(33)$	$91.08(9)$	$91.01(11)$	$92.33(11)$	$92.99(13)$
$\mathrm{N}(15)-\mathrm{Fe}(1)-\mathrm{N}(20)$	$98.21(10)$	$99.06(12)$	$103.64(11)$	$104.16(13)$
$\mathrm{N}(15)-\mathrm{Fe}(1)-\mathrm{N}(27)$	$94.69(9)$	$95.91(11)$	$101.42(11)$	$102.24(13)$
$\mathrm{N}(15)-\mathrm{Fe}(1)-\mathrm{N}(33)$	$90.79(9)$	$90.83(11)$	$91.58(11)$	$91.39(13)$
$\mathrm{N}(20)-\mathrm{Fe}(1)-\mathrm{N}(27)$	$79.75(10)$	$78.84(11)$	$74.63(11)$	$73.65(13)$
$\mathrm{N}(20)-\mathrm{Fe}(1)-\mathrm{N}(33)$	$79.82(9)$	$78.61(11)$	$74.47(10)$	$73.94(12)$
$\mathrm{N}(27)-\mathrm{Fe}(1)-\mathrm{N}(33)$	$159.40(9)$	$157.21(11)$	$148.51(11)$	$147.02(13)$
θ	$87.45(3)$	$86.88(3)$	$84.13(3)$	$83.55(4)$

Table S5 Selected structural parameters $\left(\AA,^{\circ}\right)$ for $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}$ and $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$, used to $\underline{\text { monitor their spin states at different temperatures. The bond length data are plotted in Fig. S2. }}$

$T(\mathrm{~K})$	100	150	200	250
$\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}$				
Average $\mathrm{Fe}-\mathrm{N}$ \{pyridine ${ }^{\text {a }}$	1.910(2)	1.963(3)	2.069(3)	2.107(3)
	2.007(3)	2.048(4)	$2.135(4)$	2.169(4)
Average L ${ }^{2}$ bite angle ${ }^{\text {c }}$	79.70(14)	78.17(18)	75.18(14)	74.27(17)
$\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$				
Average $\mathrm{Fe}-\mathrm{N}$ \{pyridine ${ }^{\text {a }}$	1.903(3)	1.939(4)	2.087(4)	2.115(4)
	2.001(4)	2.027(6)	2.154(6)	2.179 (6)
Average L ${ }^{2}$ bite angle ${ }^{\text {c }}$	79.86(19)	78.9(2)	74.5(2)	73.8(3)

[^0]

Fig. S2 Plot of the variation of the $\mathrm{Fe}-\mathrm{N}$ bond lengths with temperature in $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2} \cdot 4 \mathrm{CH}_{3} \mathrm{CN}$ (black) and $\left[\mathrm{Fe}\left(\mathrm{L}^{2}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ (grey). Data are taken from Table S 5 , and the averaged $\mathrm{Fe}-\mathrm{N}\{$ pyrazole $\}$ and $\mathrm{Fe}-\mathrm{N}\{$ pyridine $\}$ distances are plotted separately. The estimated midpoints of the spin-transitions correspond to the temperature at which the average $\mathrm{Fe}-\mathrm{N}$ distances lie mid-way between the values for the fully high-spin and fully low-spin

Table S6 C-H...I hydrogen bond distances and angles $\left(\AA,^{\circ}\right)$ in $\left[\mathrm{Fe}\left(\mathrm{L}^{1}\right)_{2}\right] \mathrm{I}_{0.5}\left[\mathrm{I}_{3}\right]_{1.5}(\mathbf{1})$.

	$\mathrm{C}-\mathrm{H}$	$\mathrm{H} \ldots \mathrm{I}$	$\mathrm{C} \ldots . \mathrm{I}$	$\mathrm{C}-\mathrm{H} \ldots \mathrm{I}$
$\mathrm{C}(4)-\mathrm{H}(4) \ldots \mathrm{I}\left(39 \mathrm{~A}^{\mathrm{i}}\right)$	0.95	3.04	$3.932(10)$	157.1
$\mathrm{C}(4)-\mathrm{H}(4) \ldots \mathrm{I}\left(39 \mathrm{~B}^{\mathrm{i}}\right)$	0.95	3.00	$3.88(2)$	154.0
$\mathrm{C}(4)-\mathrm{H}(4) \ldots \mathrm{I}\left(41 \mathrm{~B}^{\mathrm{iii}}\right)$	0.95	2.96	$3.830(19)$	153.7
$\mathrm{C}(6)-\mathrm{H}(6) \ldots \mathrm{I}\left(34^{\text {iii }}\right)$	0.95	3.05	$3.999(5)$	174.6
$\mathrm{C}(10)-\mathrm{H}(10) \ldots \mathrm{I}\left(35^{\mathrm{iv}}\right)$	0.95	3.11	$4.022(6)$	161.9
$\mathrm{C}(11)-\mathrm{H}(11) \ldots \mathrm{I}\left(37^{\mathrm{i}}\right)$	0.95	3.26	$3.933(6)$	129.7
$\mathrm{C}(15)-\mathrm{H}(15) \ldots \mathrm{I}\left(39 \mathrm{~A}^{\mathrm{v}}\right)$	0.95	3.15	$4.100(11)$	175.1
$\mathrm{C}(15)-\mathrm{H}(15) \ldots \mathrm{I}\left(39 \mathrm{~B}^{\mathrm{v}}\right)$	0.95	3.12	$4.06(2)$	171.7
$\mathrm{C}(15)-\mathrm{H}(15) \ldots \mathrm{I}\left(41 \mathrm{~B}^{\text {vi }}\right)$	0.95	3.25	$4.19(2)$	169.9
$\mathrm{C}(16)-\mathrm{H}(16) \ldots \mathrm{I}\left(40 \mathrm{~A}^{\text {vii }}\right)$	0.95	3.13	$4.038(8)$	160.2
$\mathrm{C}(16)-\mathrm{H}(16) \ldots \mathrm{I}\left(40 \mathrm{~B}^{\text {vii }}\right)$	0.95	3.18	$4.10(2)$	161.9
$\mathrm{C}(17)-\mathrm{H}(17) \ldots \mathrm{I}\left(34^{\text {iii }}\right)$	0.95	3.10	$4.033(6)$	168.0
$\mathrm{C}(20)-\mathrm{H}(20) \ldots \mathrm{I}\left(37^{v}\right)$	0.95	3.08	$4.013(5)$	166.1
$\mathrm{C}(21)-\mathrm{H}(21) \ldots \mathrm{I}\left(38^{v}\right)$	0.95	3.23	$3.905(6)$	129.4
$\mathrm{C}(26)-\mathrm{H}(26) \ldots \mathrm{I}(34)$	0.95	3.10	$3.926(6)$	145.9
$\mathrm{C}(28)-\mathrm{H}(28) \ldots \mathrm{I}\left(37^{v}\right)$	3.95	3.23	$4.150(6)$	162.6
$\mathrm{C}(31)-\mathrm{H}(31) \ldots \mathrm{I}\left(35^{\mathrm{i}}\right)$	0.95	3.06	$3.968(6)$	160.3

Symmetry codes: (i) $1-x, 2-y, 1-z$; (ii) $1+x, 2-y, 1 / 2+z$; (iii) $2-x, 2-y, 1-z$; (iv) $1-x, y, 3 / 2-z$; (v) $1-x, 1-y, 1-z$; (vi) $1+x, 1-y$, $\underline{1 / 2+z}$; (vii) $1+x, y, z$.

[^0]: ${ }^{\text {a }}$ Average $\mathrm{Fe}-\mathrm{N}\{$ pyridine $\}=1 / 2[\{\mathrm{Fe}(1)-\mathrm{N}(2)\}+\{\mathrm{Fe}(1)-\mathrm{N}(20)\}]$
 ${ }^{\mathrm{b}}$ Average $\mathrm{Fe}-\mathrm{N}\{$ pyrazole $\}=1 / 4[\{\mathrm{Fe}(1)-\mathrm{N}(9)\}+\{\mathrm{Fe}(1)-\mathrm{N}(15)\}+\{\mathrm{Fe}(1)-\mathrm{N}(27)\}+\{\mathrm{Fe}(1)-\mathrm{N}(33)\}]$
 ${ }^{\mathrm{c}}$ Average bite angle $=1 / 4[\{\mathrm{~N}(2)-\mathrm{Fe}(1)-\mathrm{N}(9)\}+\{\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(15)\}+\{\mathrm{N}(20)-\mathrm{Fe}(1)-\mathrm{N}(27)\}+\{\mathrm{N}(20)-\mathrm{Fe}(1)-\mathrm{N}(33)\}]$

