Reactivity of cyclooligophosphanes: Synthesis and structural characterisation of *cyclo*-1,4-(BH₃)₂(P₄Ph₄CH₂) and *cyclo*-1,2-(BH₃)₂(P₅Ph₅)

Electronic Supplementary Information.

The electronic supplementary information contains:

- a) graphical representations of the experimental and simulated ${}^{31}P{}^{1}H{}^{11}B{}$ NMR spectra of 3,
- b) graphical representation of the ³¹P MAS spectrum of **3**,
- c) graphical representation of the low-temperature NMR experiment on 3,
- d) graphical representation of the ${}^{31}P{}^{1}H{}^{31}P{}^{1}H{}$ COSY NMR spectrum of 4,
- e) graphical representations of the optimised (B3LYP) structures of the symmetrical diastereomers of cyclo-(P₄Ph₄CH₂)
- (2) and cyclo-1,4-(BH_3)₂($P_4Ph_4CH_2$) (3)

a) Experimental and simulated ³¹P{¹H,¹¹B} NMR spectra of 3

A negative sign was used for the coupling constants ¹J_{PP} and the remaining signs and coupling constants were calculated with the program SPINWORKS (K. Marat, SPINWORKS, version 2000 05 10, University of Manitoba).

	$(R_{\rm P}^*, S_{\rm P}^*, S_{\rm P}^*, R_{\rm P}^*)$ -(±)- 3	$(R_{\rm P}^*, R_{\rm P}^*, R_{\rm P}^*, R_{\rm P}^*)$ -(±)- 3
δ _A	+25.13(1)	+33.65(1)
δ_{B}	-35.08(1)	-38.99(1)
$^{1}J_{\mathrm{AB}}$ / Hz	-188.5(3)	-266.6(2)
${}^{1}J_{\rm BB'}/{\rm Hz}$	-146.5(2)	-172.6(2)
$^{2}J_{\mathrm{AB}^{c}}/\mathrm{Hz}$	+35.1(1)	+1.8(1)
$^{2}J_{\mathrm{AA}^{\circ}}$ / Hz	-15.3(2)	-32.0(2)
rms	0.37	0.32

Table S.1 Simulated ³¹P NMR parameters of 3.

Fig. S.1 Experimental (lower) and simulated (upper) ${}^{31}P{}^{1}H{}^{11}B{}$ NMR spectra of **3** (121.50 MHz, C₆D₆, overlapping resonances of the respective other stereoisomer are marked with an asterisk).

b) ³¹P MAS spectrum of 3 (202.45 MHz)

c) low-temperature NMR experiment on 3

- upper spectrum: ${}^{31}P{}^{1}H$ NMR spectrum (161.9 MHz) recorded at -80 °C immediately after cooled C₇D₈ had been added to a sample of **3** in the NMR tube
- lower spectrum: ${}^{31}P{}^{1}H$ NMR spectrum of the same sample measured again at -80 °C, but after the sample had been briefly brought to room temperature

d) ³¹P{¹H} ³¹P{¹H} COSY NMR spectrum of 4 (283.43 MHz, CDCl₃)

e) graphical representations of the optimised (B3LYP) structures of the symmetrical diastereomers of *cyclo*-(P₄Ph₄CH₂) (2) and *cyclo*-1,4-(BH₃)₂(P₄Ph₄CH₂) (3)

 $(R_{P}, R_{P}, S_{P}, S_{P})$ -cyclo-1,4- $(BH_{3})_{2}(P_{4}Ph_{4}CH_{2})$

 $(S_{P}, R_{P}, S_{P}, R_{P})$ -cyclo-1,4- $(BH_{3})_{2}(P_{4}Ph_{4}CH_{2})$