Electronic Supplementary Information

for

Thioester hydrolysis reactivity of zinc hydroxide complexes: Investigating reactivity relevant to glyoxalase II enzymes

Lisa M. Berreau, Amrita Saha, and Atta M. Arif

 $[(L^{1}Zn_{2})(\mu-OH)](ClO_{4})_{2}$ (1). A solution of L¹H (43 mg, 0.082 mmol) in acetonitrile (5 mL) was added to solid Zn(ClO₄)₂·6H₂O (61 mg, 0.16 mmol) and the mixture was stirred for ~ 5 minutes. Once the Zn(ClO₄)₂·6H₂O had fully dissolved, this solution was added to a slurry of (CH₃)₄NOH 5H₂O (30 mg, 0.16 mmol) in acetonitrile. The resulting mixture was stirred for 24 h at room temperature. The solvent was then removed under reduced pressure. The resulting residue was dissolved in CH₂Cl₂ and filtered through a celite/glass wool plug. Recrystallization of this solid from CH₃CN:diethyl ether yielded the product as crystalline blocks suitable for single crystal X-ray crystallographic analysis (58 mg, 82%) (Found: C, 44.14; H, 3.95; N, 9.79. $C_{33}H_{34}N_6Zn_2Cl_2O_{10}$ requires C, 45.41; H, 3.93; N, 9.63%); v_{max}/cm^{-1} : (OH) 3430 (br), (ClO₄) 1092, (ClO₄) 625 (KBr); $\delta_{\rm H}$ (400 MHz, solvent CD₃CN): 2.15 (3H, s), 3.82 (4H, s), 3.92-4.08 (8H, m), 6.87 (2H, s), 7.52 (4H, d, J = 7.9 Hz), 7.65 (4H, m), 8.05 (4H, t, J = 7.7 Hz, 8.96 (4H, m), a resonance was not identified for the bridging hydroxyl proton; $\delta_{\rm C}$ (100 MHz, solvent CD₃CN): 20.1, 57.5, 59.3, 122.9, 125.9, 126.0, 126.8, 134.0, 149.6, 156.7, 161.2 (12 signals expected, 11 observed; 1 aromatic resonance not observed, presumably due to overlap).

Fig. S1 ORTEP representation of the cationic portion of $1-3CH_3CN$. All hydrogen atoms except the hydroxyl proton have been omitted for clarity. All ellipsoids are plotted at the 50% probability level.

Empirical formula	CHCINO 7n
	000.46
M Grantal anatam	Mana alimia
	Monoclinic
Space group	$P2_1/c$
a/A	12.2290(2)
b/A	10.10390(10)
c/Å	34.6544(7)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	91.2424(5)
γ/°	90
V/Å ³	4280.91(12)
Ζ	4
$D_{\rm c}/{\rm Mg~m^{-3}}$	1.551
T/K	150(1)
Color	colorless
Crystal size/mm ³	0.25 x 0.15 x 0.13
Diffractometer ^a	Nonius KappaCCD
μ/mm^{-1}	1.313
$2\theta_{\rm max}/^{\circ}$	55.88
Completeness to $\theta = 27.94^{\circ}$ (%)	99.4
Reflections collected	17587
Independent reflections	10200
R _{int}	0.0714
Variable parameters	579
$R1/wR2^{b}$	0.0488/0.0854
Goodness-of-fit (F^2)	1.039
$\Delta \rho_{\rm maximum}/e~{\rm \AA}^{-3}$	0.626/-0.644
- p ^o maxmin ⁷ • • •	0.020, 0.0

Table S1Summary of X-ray data collection and refinement for $1.3CH_3CN^a$

^{*a*} Radiation used: Mo K α ($\lambda = 0.71073$ Å). ^{*b*} $R1 = \sum ||F_0| - |F_c|| / \sum |F_0|$; w $R2 = [\sum [w(F_0^2 - F_c^2)^2] / [\sum (F_0^2)^2]]^{1/2}$ where $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$.

Table S2	Selected bond	lengths (Å) and angles (°) for	1-3CH ₃ CN ^a
----------	---------------	------------	----------------	--------	------------------------------------

Zn(1)-O(2)	1.984(2)
Zn(1)-O(1)	2.0260(18)
Zn(1)-N(2)	2.062(2)
Zn(1)-N(3)	2.064(2)
Zn(1)-N(1)	2.183(2)
Zn(2)-O(2)	1.985(2)
Zn(2)-O(1)	2.0511(19)
Zn(2)-N(5)	2.052(2)
Zn(2)-N(6)	2.072(2)
Zn(2)-N(4)	2.186(2)
O(2)-Zn(1)-O(1)	81.20(8)
O(2)-Zn(1)-N(2)	103.43(9)
O(1)-Zn(1)-N(2)	126.26(8)
O(2)-Zn(1)-N(3)	106.52(9)
O(1)-Zn(1)-N(3)	113.26(8)
N(2)-Zn(1)-N(3)	116.12(9)
O(2)-Zn(1)-N(1)	170.26(8)
O(1)-Zn(1)-N(1)	89.26(8)
N(2)-Zn(1)N(1)	80.63(9)
N(3)-Zn(1)-N(1)	78.99(9)
O(2)-Zn(2)-O(1)	80.57(8)
O(2)Zn(2)-N(5)	113.10(8)
O(1)-Zn(2)-N(5)	113.08(9)
O(2)-Zn(2)-N(6)	98.64(9)
O(1)-Zn(2)-N(6)	127.42(8)
N(5)-Zn(2)-N(6)	115.12(9)
O(2)-Zn(2)-N(4)	165.29(8)
O(1)-Zn(2)-N(4)	88.48(8)
N(5)-Zn(2)-N(4)	80.19(8)
N(6)-Zn(2)-N(4)	80.21(9)

^a Estimated standard deviations indicated in parentheses.

Figure S2 Space-filling model for the cationic portion of 1 (prepared using Chem3D).

Zinc (green) Nitrogen (blue) Oxygen (red) Carbon (gray) Hydrogen (light blue)

Figure S3. ¹H NMR spectra of 2 (a) and 3 (b) in CD₃CN at 25(1) $^{\circ}$ C