Intervalence Charge Transfer in a "Chain-like" Ruthenium Trinuclear Assembly based on the Bridging Ligand 4,7-phenanthrolino-5,6:5',6'-pyrazine (ppz)

Deanna M. D'Alessandro and F. Richard Keene*

SUPPLEMENTARY INFORMATION

Electronic Supplementary Material for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

Table S1. ¹H Chemical shifts (ppm) for Λ -[Ru(bpy)(HAT)₂]²⁺ and Λ ^t-[Ru(bpy)(ppz)₂]²⁺ (CD₃CN,

PF_6 salts).	The ¹ H N	MR spectra	of the Δ a	nd Λ enantio	mers were iden	itical in each case.
----------------	----------------------	------------	-------------------	----------------------	----------------	----------------------

		$[Ru(hnv)(HAT)_{2}]^{2+}$	trans-[Ru(bpy)(ppz)] ²⁺
			<i>trans</i> -[Ru(opy)(pp2) ₂]
bpy ^a	H3	8.60	8.58
	H4	8.16	8.14
	Н5	7.39	7.34
	H6	7.83	7.83
HAT	H2	8.39 (2H, <i>J</i> = 3 Hz, d)	
	Н3	9.24 (2H, s)	
	Н6	9.39 (2H, s)	
	H7	9.39 (2H, s)	
	H10	9.02 (2H, s)	
	H11	8.29 (2H, <i>J</i> = 3 Hz, d)	
ppz	H2		8.86 (2H, <i>J</i> = 3 Hz, d)
	H3		8.11 (2H, <i>J</i> = 3 Hz, d)
	H6		8.22 (2H, <i>J</i> = 5, 1 Hz, dd)
	H7		7.97 (2H, <i>J</i> = 10, 8 Hz, dd)
	H8		9.32 (2H, <i>J</i> = 8 Hz, d)
	H9		9.32 (2H, <i>J</i> = 8 Hz, d)
	H10		8.11 (2H, <i>J</i> = 10,8 Hz, dd)
	H11		9.26 (2H, J = 3, 1.5 Hz, dd)

^a H6 (2H, *J* = 5, 1.5 Hz, dd); H5 (2H, *J* = 8, 5 Hz, dd); H4 (2H, *J* = 8, 8 Hz, dd); H3 (2H, *J* = 8, 1.5 Hz, dd).

Table S2. ¹H chemical shifts (ppm) for $\Delta\Delta^t\Delta$ -[{Ru(bpy)₂}₂{Ru(bpy)(μ -ppz)₂}]⁶⁺ by comparison with the *meso-* and *rac*-[{Ru(bpy)₂}₂(μ -ppz)]⁴⁺ (CD₃CN, PF₆⁻ salts).

		meso ($\Delta\Lambda/\Lambda\Delta$)	$rac~(\Delta\Delta/\Lambda\Lambda)$	$\Delta\Delta^t\Delta$
bpy ring a ^a	H3'	8.58	8.53	8.59
(over bpy)	H4'	8.15	8.13	8.20
	H5'	7.50	7.51	7.52
	H6'	7.73	7.76	7.77
bpy ring b ^a	Н3	8.52	8.51	8.50
(over ppz)	H4	8.09	8.07	8.10
	Н5	7.39	7.02	7.17
	Н6	7.85	7.61	7.42
bpy ring c ^a	H3'	8.43	8.55	8.53
(over bpy)	H4'	8.06	8.15	8.20
	H5'	7.42	7.38	7.36
	H6'	7.75	7.66	7.65
bpy ring d ^a	Н3	8.39	8.48	8.53
(over ppz)	H4	7.99	8.00	8.07
	Н5	7.25	7.36	7.20
	H6	7.54	7.42	7.65
bpy ring e ^a	Н3			8.53
(over ppz)	H4			8.02
	Н5			7.36
	Н6			7.47
ppz^b	H2	7.93 (H2/3)	7.96 (H2/3)	7.98
	Н3			8.08
	Н6	8.23 (H6/11)	8.23 (H6/11)	8.25
	H7	8.01 (H7/10)	8.01 (H7/10)	8.10
	H8	9.32 (H8/9)	9.31 (H8/9)	9.36
	H9			9.33
	H10			8.03
	H11			8.09

^a H6 (dd; *J* = 5, 1.5 Hz); H5 (dd; *J* = 8, 5 Hz); H4 (dd; *J* = 8, 8 Hz); H3 (dd; *J* = 8, 1.5 Hz).

^b H2/3 (s); H 6/11 (dd, *J* = 5, 1.5 Hz); H7/10 (dd, *J* = 10, 8 Hz); H8/9 (dd, *J* = 8, 1.5 Hz).

Table S3. Ligand-based reduction potentials^{*a*} data (in mV), and K_c values^{*b*} for the di- and trinuclear complexes in 0.1 M $[(n-C_4H_9)_4N]PF_6/CH_3CN$ at +25°C. The potentials for $[Ru(bpy)_3]^{2+}$ are included for comparison.

Complex	E _{red1}	E _{red2}	E _{red3}	E _{red4}
$\left[\operatorname{Ru}(\operatorname{bpy})_{3}\right]^{2+}$	-1717	-1912	-2160	-2700
<i>trans</i> -[Ru(bpy)(ppz) ₂] ^{$2+c$}	-1000	-1246	-1700	-1968^{b}
<i>meso</i> -[{Ru(bpy) ₂ } ₂ (μ -ppz)] ⁴⁺	-956	-1704	-1890	-1956
$rac-[\{Ru(bpy)_2\}_2(\mu-ppz)]^{4+}$	-944	-1696	-1878	-1975
$\Delta \Delta^{t} \Delta - [\{Ru(bpy)_{2}\}_{2} \{Ru(bpy)(\mu - ppz)_{2}\}]^{6+}$	-868	-1036	-1800^{b}	-2072^{b}

^{*a*} All potentials (\pm 3 mV) in 0.1 M [(*n*-C₄H₉)₄N]PF₆/CH₃CN at +25°C vs. Fc⁺/Fc⁰.

^b Two-electron reduction process.

^c The redox properties of the Δ and Λ enantiomers were identical.

Figure S1. CD spectra (CH₃CN) of (a) Δ - and Λ -[Ru(bpy)(HAT)₂]²⁺, Band 1 (Δ): (______) and Band 2 (Λ): (______); (b) Δ ^t- and Λ ^t-[Ru(bpy)(ppz)₂]²⁺, Band 1 (Δ) (______) and Band 4 (Λ): (_____).

Figure S2. ¹H NMR spectra of (a) Λ -[Ru(bpy)(HAT)₂]²⁺ and (b) Λ ^t-[Ru(bpy)(ppz)₂]²⁺ (CD₃CN, PF₆⁻ salts).

Figure S3. ¹H NMR spectra (CH₃CN) for (a) *meso-* and (b) *rac-*[{Ru(bpy)₂}₂(μ -ppz)]⁴⁺, and (c) $\Delta\Delta^{t}\Delta$ -[{Ru(bpy)₂}₂{Ru(bpy)(μ -ppz)₂}]⁶⁺ (CD₃CN, PF₆⁻ salts).

Electronic Supplementary Material for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

Figure S4. Differential Pulse Voltammogram of $\Delta\Delta^{t}\Delta$ - [{Ru(bpy)₂}₂{Ru(bpy)(μ -ppz)₂}]⁶⁺ in 0.1 M [(*n*-C₄H₉)₄N]PF₆/CH₃CN at +25°C.

Electronic Supplementary Material for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

Figure S5. UV/Vis/NIR spectra of $[Ru(bpy)(ppz)_2]^{2+}$ (_____), *meso-*[$\{Ru(bpy)_2\}_2(\mu-ppz)]^{4+}$ (_____) and $\Delta\Delta^t\Delta$ - [$\{Ru(bpy)_2\}_2\{Ru(bpy)(\mu-ppz)_2\}$]⁶⁺ (_____) in CH₃CN at +25°C.

Figure S6. UV/Vis/NIR spectra of *meso-*[{Ru(bpy)₂}₂(μ -ppz)]^{*n*+} {*n* = 4 (_____), 5 (_____), 6 (