Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2006

Supporting information Schäfer et al. 2005

Experimental Section

General.

Unless oterwise noted, all Pd catalyzed crosscoupling reactions were conducted under an atmosphere of dry, deoxygenated argon using standard Schlenk techniques. Acetonitrile was destilled from CaH₂. Toluene was destilled from sodium benzophenone ketyl under an argon atmosphere prior to use. All other solvenses were used as received. Infrared spectra were recorded using a Perkin-Elmer 2000 FT-IR; ¹H-NMR spectra were recorded on a Bruker 400 MHz/200 Mhz spectrophotometer, UV/Visible spectra were obtained using a AnalytikJena specord S600 UV-vis. Emission spectra were recorded using a Perkin-Elmer LS50B spectrometer equipped with a Hamamatsu R928 red-sensitive detector. The mass spectra were recorded using a SSQ 170, Finigan Mat at the Friedrich Schiller University Jena. Electrospray-Mass spectra were recorded on a Finnnigan MAT, MAT 95 XL. The positive ES mass spectra were obtained with voltages of 3-4kV applied to the electrospray needle. The microwave assisted reactions were carried out using a Microwave Laboratory Systems MLS EM-2 microwave system.

dppzBr₂ L1

¹H-NMR (ppm; CDCl₃)

7,730 phen(2H, dd);

8,559 H4(2H, s);

9,233 phen(2H, d(lc));

9,529 phen(2H, d(lc));

EI-MS m/z = 440 (100%) corresponding pattern

dppz(Ph)₂ L2

¹H-NMR

7,305 phenyl (10H, s) 7,808 H2-phen (2H, dd) 8,363 H4 (2H, s) 9,300 H3-phen (2H, d) 9,626 H1-phen (2H, d)

MS(DEI, EI +Q1MS)

m/z = 434 (100%)

dppz(BPh)₂ L3

¹H-NMR (d₆-DMSO, δ = 2,485 ppm, T = 300K)

7,43 H7, H8, H9 (10H, m) 7,70 H6, H5 (8H, m) 7,91 H2(2H, dd); 8,31 H4(2H, s); 9,19 H3(2H, d(lc)); 9,44 H1(2H, d(lc));

MS(DEI, EI +Q1MS)

m/z = 586 (100%)

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2006

dppz(TBPh)₂ L4

 $C_{38}H_{34}N_4$ 546,704

C 83,48; H 6,27; N 10,25

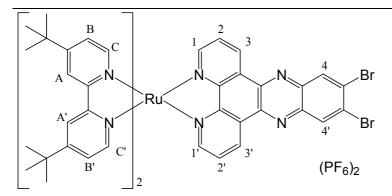
¹H-NMR (CD₂Cl₂, $\delta = 5{,}336$ ppm, T = 300°C)

1,321 CH₃ (tert.-butyl, 18H, s)

7,325 H6, H5(8H, m);

7,794 H3 (2H, dd);

8,361 H4 (2H, s);


9,215 H3 (2H, d(lc));

9,622 H1 (2H, d(lc));

MS(DEI, EI +Q1MS LMR UP LR)

m/z = 546 (30%), m/z = 531 (35%), m/z = 475 (35%)

(tbbpy)₂Ru(dppz(Br)₂) RuL1

CD₃CN 400MHz]

1,347 CH₃bpy (tert.-butyl, 18H, s)

1,441 CH₃bpy (tert.-butyl, 18H, s)

7,233 HBbpy (2H, d);

7,466 HB'bpy (2H, d);

7,565 HA bpy (2H, d);

7,659 HA'bpy (2H, d);

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2006

7,888 H2phen (2H, dd); 8,143 H3phen (2H,d); 8,476 HC bpy (2H, s); 8,515 HC' bpy (2H, s); 8,844 H4 (2H, s); 9,556 H1phen (2H, d);

$(tbbpy)_2Ru(dppz(Ph)_2)RuL2$

¹H-NMR (d₃-CD₃CN, δ = 1,943 ppm, T = 300K)

```
1,327 CH<sub>3</sub>(tert.-butyl, 18H, s)
1,434 CH<sub>3</sub>(tert.-butyl, 18H, s)
7,256 HB' (2H, d(lc))
7,353 H5, H6, H7 (10H, m);
7,475 HB (2H, d(lc))
7,620 HA' (2H, d);
7,694 HA (2H, d);
7,896 H2 (2H, dd);
8,146 H3 (2H, d(lc));
8,422 H4 (2H, s);
8,512 HC' (2H, s);
8,551 HC (2H, s);
9,589 H1 (2H, d);
```

(tbbpy)₂Ru(dppz(BPh)₂) RuL3

¹H-NMR (d₃-CD₃CN, δ = 1,930 ppm, T = 300 K)

[Dez07-2004, EXPNO 30, 400MHz]

1,277 CH₃(tert.-butyl, 18H, s)

1,471 CH₃(tert.-butyl, 18H, s)

7,412 H7, H8, H9 (10H, m)

7,211 H6 (4H, d);

7,272 H5 (4H, d)

7,348 HB'(2H, d);

7,522 HB (2H, d);

7,772 HA, HA' (4H, d);

7,799 H2 (2H, dd);

7,968 H4 (2H, s);

8,241 H3 (2H, d);

8,571 HC (2H, s);

8,639 HC' (2H, s);

9,175 H1 (2H, d);

¹H-NMR (CD₃CN, δ = 1,949 ppm, T = 300K)

```
1,312 CH<sub>3</sub>(tert-butyl, 18H, s)
1,329 CH<sub>3</sub>(tert-butyl, 18H, s)
1,468 CH<sub>3</sub>(tert-butyl, 18H, s)
7,228 H6, H5(8H, m);
7,328 HB'(2H, d(lc));
7,505 HB (2H, d(lc));
7,703 HA'(2H, d);
7,774 H2 (2H, dd);
8,031 H4 (2H, s);
8,161 H3 (2H, (lc));
8,517 HC' (2H, s);
8,566 HC (2H, s);
9,268 H1 (2H, d(lc));
```