Supporting material

- **1S.** Binding isotherm for 1:1 Cu(II)/Neotetren complex formation. $C_L = 3 \times 10^{-5}$ M. pH = 0.52, I = 0.5M (NaCl), $\lambda = 300$ nm, T = 25°C.
- **2S.** Binding isotherm for 2:1 Cu(II)/Neotetren complex formation. $C_L = 3 \times 10^{-5}$ M. pH = 3.5, I = 0.5M (NaCl), $\lambda = 300$ nm, T = 25°C. The continuous line shows the trend calculated if the 1:1 complex, instead of 2:1 complex, should have formed.
- **3S.** Spectrophotometric titrations fit for 1:1 Cu(II)/Neotetren complex formation; $C_L = 3 \times 10^{-5}$ M, pH = 0.52, I = 0.5 M (NaCl), $\lambda = 300$ nm, T = 25°C, fit of the data to Eq. (1).
- **4S.** Spectrophotometric titrations fit for 2:1 Cu(II)/Neotetren complex formation; $C_L = 3 \times 10^{-5}$ M, pH = 3.5, I = 0.5 M (NaCl), λ = 300 nm, T = 25°C, fit of the data to Eq. (2); the deviations at low Cu(II) load indicate the presence of the 1:1 complex.
- **5S.** Stopped flow curve for 1:1 Cu(II)/Neotetren complex formation; $C_L = 1.0 \times 10^{-5}$ M, $C_{Cu} = 1.0 \times 10^{-3}$ M, pH = 1.15, I = 0.5M (NaCl), $\lambda = 300$ nm, T = 25°C.
- **6S.** Stopped flow curve for 2:1 Cu(II)/Neotetren complex formation; $C_L = 1.5 \times 10^{-6}$ M, $C_{Cu} = 5 \times 10^{-5}$ M, pH = 3.00, I = 0.5M (NaCl), $\lambda = 300$ nm, T = 25°C.
- **7S.** Difference spectrophotometric titration (DNA added in both reference and sample cuvettes) of the CuNeotetren/DNA system; top) $C_D = 1.5 \times 10^{-5}$ M, $C_P = 0$ M; bottom) $C_D = 1.5 \times 10^{-5}$ M, $C_P = 1.5 \times 10^{-4}$ M. I = 0.11 M, T = 25°C, pH = 7.0.
- **8S.** Scatchard plot for the CuNeotetren/DNA system. $C_D = 1.5 \times 10^{-5} M$, $C_P = (0 \div 1.5) \times 10^{-4} M$, I = 0.11 M, pH = 7.0, $\lambda = 275$ nm, T = 25°C. The titration variable is $r = [DS]/C_P$, being C_P the total DNA concentration and $[DS] = (A-A_o)/\Delta\epsilon$ with $\Delta\epsilon = \epsilon_{DS} \epsilon_D$ first estimated from the amplitude of the titration curve.
- **9S.** Scatchard plot for the CuNeotetren/DNA system. $C_D = 1.5 \times 10^{-5} M$, $C_P = (0 \div 1.5) \times 10^{-4} M$, I = 0.025 M, pH = 7.0, $\lambda = 275$ nm, T = 25°C.

- **10S.** Stopped flow curve for the CuNeotetren/DNA system. $C_D = 1.5 \times 10^{-6}$ M, $C_{DNA} = 3.5 \times 10^{-5}$ M, I = 0.11 M, T = 25°C, pH = 7.0, $\lambda = 275$ nm.
- 11S. Stopped flow curve for the $Cu_2Neotetren/DNA$ system. $C_D=1.5\times 10^{-6}$ M, $C_{DNA}=3.5\times 10^{-5}$ M, I=0.71 M, T=25°C, pH=7.0, $\lambda=275$ nm.

Figure 1S

Figure 2S

Figure 4S

Figure 6S

Figure 7S

Figure 8S

Figure 10S

Figure 11S

