Supplementary material

A hardwon dirhodium paddlewheel with guanidinate type (hpp) bridging ligands

John F. Berry, F. Albert Cotton,* Penglin Huang, Carlos A. Murillo* and Xiaoping Wang

Synthesis and Characterization of [Rh₂(hpp)(O₂CCH₃)₃]{(O₂CCH₃)(H₂hpp)}₂, 2.

Compound 2 was prepared in several reactions but the yield was not optimized. Two methods follow.

Method A. 100 mg of $Rh_2(OAc)_4(MeOH)_2$, 120 mg of Hhpp, 120 µL of NEt₃, and 220 µL of a 1 M solution of I₂ in Et₂O were heated in 12 mL of THF for 15 h. The initially brown-purple mix became green and a dark brown gummy substance separated. After filtration, the green filtrate was layered with hexanes, and it became blue as a grey amorphous solid settled to the bottom of the flask. The dark brown gummy substance was washed with benzene and dissolved in CH₂Cl₂. The mixture was filtered, and the filtrate layered with hexanes resulting in the deposition of a sticky brown oil. From the two tubes with the filtrate, a small amount of blue crystals of **2**·2H₂O grew.

IR (KBr, cm⁻¹): 3221 w, 3146 w, 2963 m, 2865 m, 2757 w, 1663 s, 1589 s, 1561 m, 1526 m, 1476 w, 1413 s, 1342 w, 1322 m, 1290 w, 1262 m, 1205 m, 1097 m, 1074 m, 1022 m, 918 w, 802 m, 698 m, 661 w, 625 w, 477 w. ¹H NMR (300 MHz, CDCl₃, δ , ppm.): 11.04 br, s (4H, NH), 3.3–3.2 m (16H, CH₂), 3.057 t (*J* = 6 Hz, 4H, CH₂), 2.125 s (6H, CH₃), 2.062 s (3H, CH₃), 1.966 q (*J* = 5.6 Hz, 8H, CH₂), 1.79–1.74 m (10H, CH₂ + CH₃). ESI+ Mass spectrum: 800 [Rh₂(hpp)(OAc)₃(Hhpp)₂]⁺, 721 [Rh₂(hpp)(OAc)₃{(H₂hpp)(OAc)}]⁺, 661 [Rh₂(hpp)(OAc)₃(Hhpp)]⁺, 582 [Rh₂(hpp)(OAc)₃(OAc)]⁺, 522 [Rh₂(hpp)(OAc)₃]⁺. Elemental analysis, Calcd. for C₃₁H₅₈N₉O₁₂Rh₂, **2**: C, 39.00; H, 6.12; N, 13.20%. Found: C, 39.49; H 6.16; N, 12.65%.

Crystal Data for **2**·H₂O: Triclinic, *P*1, a = 11.272(3), b = 11.400(3), c = 15.856(4) Å, $\alpha = 80.768(5)$, $\beta = 78.128(5)$, $\gamma = 87.688(5)$ deg., V = 1968.3(9) Å³, Z = 2, d = 1.582 g cm⁻³, R1 ($I > 2\sigma(I)$): 0.0413, wR2 ($I > 2\sigma(I)$): 0.0951, R1 (all data): 0.0650, wR2 (all data): 0.1069.

Method B. In 30 mL of THF and a small volume of CH_2Cl_2 , 200 mg of $Rh_2(OAc)_4(MeOH)_2$ and 241 mg of Hhpp were heated to reflux overnight giving a blue solution which was filtered from a brown precipitate and layered with hexanes. Three types of crystals that formed were crystallographically characterized. The compounds were: $[Rh_2(hpp)(O_2CCH_3)_3]\{(O_2CCH_3)(H_2hpp)\}_2 \cdot 2H_2O, 2 \cdot H_2O, [Rh_2(O_2CCH_3)_4]\{(O_2CCH_3)(H_2hpp)\}_2 \cdot 3CH_2Cl_2, 4 \cdot 3CH_2Cl_2, and [H_2hpp](OAc).$

Crystal Data for 4.3CH₂Cl₂: Monoclinic, C2/c, a = 17.368(8), b = 14.227(6), c = 20.933(9) Å, $\beta = 107.792(7)$ deg., V = 4925(4) Å³, Z = 4, d = 1.477 g cm⁻³, $\mu = 1.049$ mm⁻¹, R1 ($I > 2\sigma(I)$): 0.0669, wR2 ($I > 2\sigma(I)$): 0.1901, R1 (all data): 0.0807, wR2 (all data): 0.2021. The structure of the rhodium acetate adduct [Rh₂(O₂CCH₃)₄] {(O₂CCH₃)(H₂hpp)}₂·in 4.3CH₂Cl₂ is shown in Figure S2.

Synthesis of $[Rh_2(hpp)(O_2CCH_3)_3(Hhpp)_2]$, 3. Crystals were obtained either from method B, vide supra, or by briefly exposing to air a CH₂Cl₂ solution of 2. The blue solution became purple and crystals of 3 grew from this solution after some solvent evaporated.

Crystal Data **3**·2CH₂Cl₂:: Monoclinic, *C*2/*c*, *a* = 20.952(3) Å, *b* = 13.2172(19) Å, *c* = 14.875(2) Å, β = 108.844(2) deg., *V* = 3898.5(10) Å³, *Z* = 4, *d* = 1.652 g cm⁻³, μ = 1.173 mm⁻¹, R1 (*I* > 2 σ (*I*)): 0.0281, *w*R2 (*I* > 2 σ (*I*)): 0.0692, R1 (all data): 0.0353, *w*R2 (all data): 0.0747. A drawing of the molecule of [Rh₂(hpp)(O₂CCH₃)₃(Hhpp)₂] in **3**·2CH₂Cl₂ is shown in Figure S1.

Fig S1 The structure of $[Rh_2(hpp)(O_2CCH_3)_3(Hhpp)_2]$ in **3**·2CH₂Cl₂. The Rh–Rh distance is 2.4262(5) Å.

