Supplementary material

A hardwon dirhodium paddlewheel with guanidinate type (hpp) bridging ligands

John F. Berry, F. Albert Cotton,* Penglin Huang, Carlos A. Murillo* and Xiaoping Wang

Synthesis and Characterization of $\left[\mathrm{Rh}_{2}(\mathbf{h p p})\left(\mathrm{O}_{2} \mathbf{C C H}_{3}\right)_{3}\right]\left\{\left(\mathrm{O}_{2} \mathbf{C C H}_{3}\right)\left(\mathrm{H}_{2} \mathrm{hpp}\right)\right\}_{2}, 2$.

Compound 2 was prepared in several reactions but the yield was not optimized. Two methods follow.

Method A. 100 mg of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(\mathrm{MeOH})_{2}, 120 \mathrm{mg}$ of Hhpp, $120 \mu \mathrm{~L}$ of NEt_{3}, and $220 \mu \mathrm{~L}$ of a 1 M solution of I_{2} in $\mathrm{Et}_{2} \mathrm{O}$ were heated in 12 mL of THF for 15 h . The initially brown-purple mix became green and a dark brown gummy substance separated. After filtration, the green filtrate was layered with hexanes, and it became blue as a grey amorphous solid settled to the bottom of the flask. The dark brown gummy substance was washed with benzene and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was filtered, and the filtrate layered with hexanes resulting in the deposition of a sticky brown oil. From the two tubes with the filtrate, a small amount of blue crystals of $2 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ grew.

IR (KBr, cm ${ }^{-1}$): $3221 \mathrm{w}, 3146 \mathrm{w}, 2963 \mathrm{~m}, 2865 \mathrm{~m}, 2757 \mathrm{w}, 1663 \mathrm{~s}, 1589 \mathrm{~s}, 1561$ m, $1526 \mathrm{~m}, 1476 \mathrm{w}, 1413 \mathrm{~s}, 1342 \mathrm{w}, 1322 \mathrm{~m}, 1290 \mathrm{w}, 1262 \mathrm{~m}, 1205 \mathrm{~m}, 1097 \mathrm{~m}, 1074 \mathrm{~m}$, $1022 \mathrm{~m}, 918 \mathrm{w}, 802 \mathrm{~m}, 698 \mathrm{~m}, 661 \mathrm{w}, 625 \mathrm{w}, 477 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$, ppm.): 11.04 br , s ($4 \mathrm{H}, \mathrm{NH}$), $3.3-3.2 \mathrm{~m}\left(16 \mathrm{H}, \mathrm{CH}_{2}\right), 3.057 \mathrm{t}\left(\mathrm{J}=6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.125 \mathrm{~s}$ $\left(6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.062 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.966 \mathrm{q}\left(J=5.6 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.79-1.74 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{CH}_{2}+\right.$ $\left.\mathrm{CH}_{3}\right)$. ESI+ Mass spectrum: $800\left[\mathrm{Rh}_{2}(\mathrm{hpp})(\mathrm{OAc})_{3}(\mathrm{Hhpp})_{2}\right]^{+}, 721$ $\left[\mathrm{Rh}_{2}(\mathrm{hpp})(\mathrm{OAc})_{3}\left\{\left(\mathrm{H}_{2} \mathrm{hpp}\right)(\mathrm{OAc})\right\}\right]^{+}, 661\left[\mathrm{Rh}_{2}(\mathrm{hpp})(\mathrm{OAc})_{3}(\mathrm{Hhpp})\right]^{+}, 582$ $\left[\mathrm{Rh}_{2}(\mathrm{hpp})(\mathrm{OAc})_{3}(\mathrm{OAc})\right]^{+}, 522\left[\mathrm{Rh}_{2}(\mathrm{hpp})(\mathrm{OAc})_{3}\right]^{+}$. Elemental analysis, Calcd. for $\mathrm{C}_{31} \mathrm{H}_{58} \mathrm{~N}_{9} \mathrm{O}_{12} \mathrm{Rh}_{2}$, 2: C, 39.00; H, 6.12; N, 13.20\%. Found: C, 39.49; H 6.16; N, 12.65\%.

Crystal Data for $2 \cdot \mathrm{H}_{2} \mathrm{O}$: Triclinic, $P 1, a=11.272(3), b=11.400(3), c=$ $15.856(4) \AA, \alpha=80.768(5), \beta=78.128(5), \gamma=87.688(5)$ deg., $V=1968.3(9) \AA^{3}, Z=2, d$ $=1.582 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{R} 1(I>2 \sigma(I)): 0.0413, w \mathrm{R} 2(I>2 \sigma(I)): 0.0951, \mathrm{R} 1$ (all data): 0.0650, w R2 (all data): 0.1069.

Method B. In 30 mL of THF and a small volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200 \mathrm{mg}$ of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(\mathrm{MeOH})_{2}$ and 241 mg of Hhpp were heated to reflux overnight giving a blue solution which was filtered from a brown precipitate and layered with hexanes. Three types of crystals that formed were crystallographically characterized. The compounds were: $\left[\mathrm{Rh}_{2}(\mathrm{hpp})\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{3}\right]\left\{\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{hpp}\right)\right\}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 2 \cdot \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\right]\left\{\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{hpp}\right)\right\}_{2} \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\left[\mathrm{H}_{2} \mathrm{hpp}\right](\mathrm{OAc})$.

Crystal Data for 4•3CH2Cl2: Monoclinic, $C 2 / c, a=17.368(8), b=14.227(6), c=$ 20.933(9) \AA, $\beta=107.792$ (7) deg., $V=4925(4) \AA^{3}, Z=4, d=1.477 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=1.049$ $\mathrm{mm}^{-1}, \mathrm{R} 1(I>2 \sigma(I)): 0.0669, w \mathrm{R} 2(I>2 \sigma(I)): 0.1901, \mathrm{R} 1$ (all data): 0.0807, $w \mathrm{R} 2$ (all data): 0.2021 . The structure of the rhodium acetate adduct $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\right]$ $\left\{\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{hpp}\right)\right\}_{2} \cdot$ in $4 \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ is shown in Figure S 2.

Synthesis of $\left.\left[\mathbf{R h}_{\mathbf{2}}(\mathbf{h p p})\left(\mathbf{O}_{2} \mathbf{C C H}_{3}\right)_{\mathbf{3}} \mathbf{(H h p p}\right)_{2}\right]$, 3. Crystals were obtained either from method B , vide supra, or by briefly exposing to air a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 2 . The blue solution became purple and crystals of $\mathbf{3}$ grew from this solution after some solvent evaporated.

Crystal Data $3 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}::$ Monoclinic, $C 2 / c, a=20.952(3) \AA, b=13.2172(19) \AA, c=$ 14.875(2) $\AA, \beta=108.844(2)$ deg., $V=3898.5(10) \AA^{3}, Z=4, d=1.652 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=1.173$ $\mathrm{mm}^{-1}, \mathrm{R} 1(I>2 \sigma(I)): 0.0281, w \mathrm{R} 2(I>2 \sigma(I)): 0.0692$, R 1 (all data): 0.0353, $w \mathrm{R} 2$ (all data): 0.0747 . A drawing of the molecule of $\left[\mathrm{Rh}_{2}(\mathrm{hpp})\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{3}(\mathrm{Hhpp})_{2}\right]$ in $3 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ is shown in Figure S1.

Fig S1 The structure of $\left[\mathrm{Rh}_{2}(\mathrm{hpp})\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{3}(\mathrm{Hhpp})_{2}\right]$ in $3 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{Rh}-\mathrm{Rh}$ distance is $2.4262(5) \AA$.

Fig S2 The structure of the rhodium acetate adduct $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}\right]\left\{\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{hpp}\right)\right\}_{2}$ - in $4 \cdot 3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$,

